

SUMMER INSTITUTE 2014 HANDS-ON EXPERIMENTAL UNDERGROUND PHYSICS AT LNGS

DarkSide-50 Experiment

Two Phase Liquid Ar TPC WIMP search @ LNGS

- Low Background
 - Underground Argon
- Background Rejection
 - S2/S1 ratio
 - Pulse Shape Discrimination using triplet/singlet ratio
- Active Neutron Veto
 - Boron doped scintillator

Low Energy Calibration

- TPC filled with LAr \rightarrow ³⁹Ar β decay spectrum, Q-Value: 565 keV
- ^{83m}Kr gas deployed into detector $\rightarrow \gamma 41.5$ keV (half life: 1.83 hr)

• Fit to the ³⁹Ar, ^{83m}Kr

Resolution: $\sigma = \sqrt{a^2 + (1+b^2)} \times PE + (1+c^2) \times PE^2$)

Light Yield & Electric Field

- With no **E** Field, LY is constant in PE
- But we need **E** to drift electrons.
 - Reduces scintillation from recombination as e⁻ are swept away
 - Energy dependent? It is in nuclear recoils at higher E...

SCENE Collab.

Light Yield & Electric Field

• E Field set to 0.2 kV/cm

Light Yield & Electric Field

- Better fit with higher LY at lower E
- Work in progress: too high at low PE, iffy fit

Fit Systematics

• ³⁹Ar Q-Value effect

PE/keV	Q -1%	565 keV	Q +1%
Light yield	7.964±0.004	7.883±0.006	7.803±0.004
uncertainty	1.03±0.09%		1.01±0.09%

• More works,

³⁹Ar: $Q_{\beta} \pm 1\% \rightarrow Q_{\beta}(1+\alpha)$, $\chi^{2}(LY, \alpha, c; \alpha) = \chi^{2}(LY, \alpha, c) + (\alpha/1\%)^{2}$

Fit Systematics

• Field effect (^{83m}Kr)

^{83m} Kr	zero field	0.2 kV/cm	
Light yield (PE/keV)	7.891±0.003	6.998±0.001	11.32±0.04% (~ 3%)
σ/μ	6.68±0.3%	5.94±0.4%	

Fit Systematics

• Light yield – ^{83m}Kr, ³⁹Ar

	^{83m} Kr	³⁹ Ar
Light yield (PE/keV)	7.891±0.002	7.898±0.004
Systematic uncertainty	~11%	~1%

Next Steps

Light Yield:

- Try higher order polynomials
 Systematics:
- Treat endpoint uncertainty properly as a nuisance parameter

Our thanks to A. Ianni, N. Rossi, and the entire GSSI organizing committee

backup Low Energy Calibration

- Resolution: $\sigma = \sqrt{a^2 + (1+b^2)} \times PE + (1+c^2 \times PE^2)$
- a: the variance of the integrated baseline over the length of the pulse
- b: the relative variance of the single photoelectron response averaged over all channels (fixed at 0.4)
- c: the relative geometrical variance, associated with non-uniformaties in the light collection of the detector

backup Low Energy Calibration

- Point sources and neutron gun will be deployed using calibration insertion system
- Gamma sources: ⁵⁷Co, ²²Na, ⁶⁰Co, ⁸³Rb

backup Fit Systematics

• Light yield - ^{83m}Kr & ³⁹Ar

PE/keV	Q -1%	565 keV	Q +1%
Kr	7.891±0.002	7.891±0.002	7.891 ±0.003
Ar	7.979 ±0.003 1.03%	7.898 ±0.004	7.818 ±0.003 1.01%

• Light yield, a and c

	^{83m} Kr	³⁹ Ar
Light yield (PE/keV)	7.891 ±0.002	7.898 ±0.004
A	12.734 ± 0.153	62.950 ± 0.078
С	0.018 ± 0.001	0.057 ± 0.001

Stopping Power in Ar

DARWIN Collab.