Nuclear Emulsion Data Analysis

WAN, Linyan(THU) 03/10/2014

Instructor:

Natalia Di Marco, Fabio Pupilli (OPERA)

Content

- →Opera Experiment
- → Data Acquisition
- → Cutoff Analysis
- → Resolution
- → Efficiency
- → Signal Discrimination
- → Nuc Emulsion Application

Opera Experiment

History of Emulsion

- Photo Emulsion(Bacquerel)
- Emulsion Cloud Chamber
 - BEBC, E653, CHORUS...

Scientific Purpose

 Tau neutrino appearance in mu neutrino beam

Nuclear Emulsion bricks

- Lead & Emulsion
- 2 Changeable Sheets
 - (45 + 210 + 45) um

Data Acquisition

• Microscope

- Scan CS & Store the grains
- Offline Analysis
 - Grains into micro tracks
 - Micro tracks into base tracks
 - Base tracks into volume tra

Cutoff Analysis

• To obtain a **constant grain number** for the **top** and **bottom** layer of which the luminosity is different, we need to give them different **cutoff**.

Cluster-Cutoff

Resolution Analysis

 The resolution improves as the grains are linked into volume tracks. For different track slope, the resolution is different, reaching to um & mrad:

Detection Efficiency Analysis

• With **3 or more** sheets, we can analyze the **efficiency** by **reconstructing the tracks**. The detection efficiency can be as high as **0.9**.

10/03/14

Signal Discrimination

- Instead of using manual check for the linked tracks, a TMVA method is applied aiming to tell the true tracks apart from the false ones.
- Input variables:

Rejection and Efficiency

Prospect for Nuclear Emulsion

• Dark Matter Detection

- Nuclear Emulsion WIMP Search (Directional)
- Spatial resolution ~ 100 nm, ~ 10 degree
- Emulsion Optical Scope X-ray Scope
- Geological Detection
 - Cosmic ray muon tomography
 - Unzen (Japan), Stromboli (Italy), Teide (Spain) volcanoes
- Medical Detection
 - Hadron therapy