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Detector Basics

« Particles deposit phonons and scintillation light in the CaWO, crystal.

* Phonons heat the crystal. Photons are absorbed by a silicon-on-sapphire
disc, converting them into phonons in the disc.

« Two transition edge sensors (TES) vary their resistance with the resulting
temperature changes. SQUIDs measure the change in current.

* The crystal is kept at 8mK, and the TES are heated to remain at the
correct operating point.
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Figure 2.7. — Schematic drawing of a CRESST detector module.
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« The detector is mounted in a
way that minimizes high
frequency vibrations, which
create noise.

* The goal of the measurements is
to examine the detector
response to alpha particles at
low energies.

 Sources used:

— U-238 (4.3 MeV o emitter), in solution, with
teflon sheet to smear energies to lower
values.

— Sm-147 (2.3 MeV & emitter), in bulk, with
gold foil to prevent recoil nuclei from
reaching detector.

— Am-241(59.5 keV y emitter)

Mounting and Sources
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Bias current sweep for Phonon Detector
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« To maintain stability, artificial
heater pulses are injected.
Heater demand is tuned to
keep its amplitude stable.
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Settings for Phonon Detector
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Two components of phonon signal

- pulse data

— fit

Pulse Shapes

« Pulses are made up of a non-
thermal fast component and
a thermal slower-decaying
component.

« Over the linear part of the |
TES transition, pulse L

|
l, non-thermal component
i
i

thermal component
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Light yield

* Using the 59.5 keV peak from Am-241, we normalize
the scintillation photon to phonon yield to 1 for electron

and gamma interactions.

« Alpha particles and nuclear recoils yield about 4th as
much scintillation light.
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Preliminary Data:
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The a band

Since WIMP signals are nuclear
recoils, understanding where the e/Y
and & bands lie is vital to

understanding backgrounds for
WIMP searches.

In past analyses, & bands were
extrapolated from high-energy
quenching factors assuming a
constant light yield ratio.

Work by Karoline Schaffner (our
tutor) showed that this wasn't the
case- low energy & particles deposit
more light than expected.

More measurements like this one will
help determine the & band energy
dependence and set stronger
bounds on WIMP interactions.
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