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Earth Rotation and Orientation are providing the link between the terrestrial (ITRF) and celestial reference frames
(ICRF). Traditionally the Earth orientation parameters (EOPs) are observed by radio interferometry. The fixed
positions of the quasars, along with measurement redundancy of a sufficiently large network, provide the long-term
stability of the observations. For the short-term and the access to the instantaneous rotation axis of the Earth,
VLBI is depending on suitable models, which still have some deficiencies. Optical interferometric rotation sensing
with ring lasers in contrast provides direct access to the Earth rotation axis, a high resolution in the short-term,
but are suffering from tiny non-reciprocal laser behavior causing drift in the long-term. Now, one hundred years
after George Sagnac’s important paper published in Comptes Rendus in 1913 the tools of modern quantum optics
have matured to a point where they make ring lasers more than 12 orders of magnitude more sensitive than the
early instrumentation in this field. The single component prototype ring laser G in Wettzell now resolves rotation
rates of 10e-12 rad/s after one hour of integration and has demonstrated an impressive sensor stability over several
month. The combination of VLBI and ring laser measurements offers an improved sensitivity for the EOPs in the
short-term and the direct access to the Earth rotfation axis. At the same time the progress in controlling the
backscatter coupling in ring lasers has succeeded to reach the domain of 3 parts per billion for the relative
uncertainty of the measured Earth rotation. This paper explores the prospects of optical Sagnac Interferometry in
Geodesy at the Centennial of the Sagnac effect.



Earth: "The living Planet”

protective Naturgy,
0z,

complex interaction
of coupled subsystems

large numbers of dynamic
processes over a wide range
of time scales

Resources of the Earth are
limited

Geodesy contributes to better
understanding by:

- mapping the figure and gravity field
- observing changes over time
- establishing reference frames ¥TwHasol”l
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Intergovernmental Panel on Climate Change (IPCC)

modeled temperature scenarios
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Increase in temperature — mean sea level rise
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GRACE - Results: Greenland
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— approx. 180 Gt per vyear
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Plate Tectonics — Earthquakes
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System Earth - Relevant Timescales

\

[ Lithosphere:
Plate Tectonics < Earthquakes

Millions of Years < several Seconds

cm/year < km/s
\_

( )

Hydrosphere:
Sea Level Rise < Tsunami
3 mm/year < 300 m/s

\.

\.

( )
Atmosphere:

Climate < Weather

.

years - decades < hours - days

— Requirements
Measurement techniques of extremely high resolution and stability

Quantification of very small and slow processes vs. highly dynamic realtime



International
Associationof

eoC \

> ,Internal” Goal

Evolution of GGOS and the geodetic observation
technologies to establish an Earth fixed reference : :
frame with a relative accuracy of at least Geokinematics

102 =1 ppb

109

Reference
frames

Earth Gravity
rotation field

with high spatial and temporal resolution.

>  External” Goal
Integration of GGOS as an important

contributor intfo Earth System Research
(Modeling of physical, chemical and biological
processes).

Contributions: Mass transport, dynamics,
surface deformations.



Earth rotation as the link between ICRF and ITRF

e a) the rotation rate of the Earth is not
constant. Deceleration by dissipation and
variation by momentum exchange. Free
oscillations excited by ocean, atmosphere
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Erdbahn b) gravitational attraction of sun

and moon on a near spherical
object give rise to precession and
nutation

-
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c) mass redistribution on Earth and the T
fact that the figure axis and the axis of
Inertia are not coinciding, give rise to
polar motion
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Sagnac Interferometer (1913)

Rotation Rate: 2 rev. per sec.

observed Fringe Shift:

6¢=8nAn-a)
Ac

with A = 0.086 m? this turns
out to be 0.0710.01 fringes

Georges Sagnac was the first fo correctly combine theory with experiment.
We also acknowledge the experimental skill fo build a sufficiently stable
apparatus.



The Michelson - Gale Interferometer in Clearing, Illinois (1925)
(upscaling provided a fringe pattern solely caused by Earth rotation)
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The Michelson - Gale Interferometer in Clearing, Illinois (1925)
(upscaling provided a fringe pattern solely caused by Earth rotation)

——— ——

X

"Well, gentlemen, we will undertake this,
although my conviction is strong that we
shall prove only that the earth rotates on
its axis, a conclusion which I think we may
be said to be sure of already.”




Shortly after the successful demonstration of an optical maser, rotation
sensing with active optical interferometers have been pursued...
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While the first laser gyro did not unlock on the
rotation rate of the Earth and had fo be spun fo
demonstrate gyroscope functions...

...a rapid development process made them a
preferred instrument for navigation over the
the course of the 70's




photomultiplier PMT,
(single beam)

photomultiplier PMT,
(combined beam)

ol

radio frequency
transmitter

matching
circuit

vacuum
system
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Geodesy provided the motivation to
renew the development of ring lasers

Since Earth rotation is the link between the
global terrestrial and the celestial reference
frame, Sagnac interferometry was considered
a promising approach for a constant monitoring

Significant upscaling provides the necessary
9 orders of magnitude dynamic range

Gravitational wave detection technology
development eventually delivered suitable
mirrors to combat lock-in at the Earth rate
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Baseline: monolithic Gyro Design

® Prototype: C-II (1997)
® Perimeter 4 m

® He-Ne (632.8 nm)

® Cavity in Neutral Plane
® UHV-Compatibility

® RF-Excitation

Feasibility of Project shown




Alternative Concept: UG-2 RLG with 834 m? of Area

UG-2 built in 2003 with dimensions: 39.7 m x 21 m
Heterolithic concept built from stainless steel tubes



Scale Factor Variations in UG-2 inferred from Beam
Wander Measurements
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Long term stability is in the = 5 ppm regime with a short term stability much worse



G - Ring the currently best performing gyro

Perimeter: 16 m

Area: 16 m?

FSR 18.75 MHz

AV, = 274 uHz

5 ppm total loss

Q=wT =~ 5x10!2

6.5 mB gas pressure in order to
avoid multi-moding



A typical timeseries of G ring laser measurements...
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... containing not modeled external signals and sensor
noise (most prominently backscatter contributions)
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rel. Allan Deviation

Stability chart of our important large gyros
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Operations can be stabilized by controlling the
perimeter via a pressure stab. vessel




Comparison of G tied to the Earth crust against the
(known) geophysical signals due to orientation variation
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Earth rotation causes a beat note of 348.522 Hz. Tilt induced geophysical
signals show signatures in the range of +0.000050 Hz
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... the Chandler and the annual

wobble
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AQ) [p-rad/s]

Comparison to VLBI measurements
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PRL 107, 173904 (2011)
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Interim Summary:
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Plane transversely polarized wave propagating in x-direction with phase velocity ¢

u,(x,t)= f(kx — wt) c=w/k

Acceleration ay (,Xf,t) = l;iy (x,t) — a)zf”(kx — a)t)

. 1 1
Rotation rate (1) = 5V x| 0,1i,,0 | = [O,O,—Ekw 7 (kx — wt)}

—_— a(x,t)/ Q(x,1)==-2c

Rotation rate and acceleration should be in phase and the amplitudes scaled
by two times the horizontal phase velocity



Rotations in Seismology:

For plane transversely polarized
waves we find from theory:

Rotation rate and acceleration are
in phase and the amplitudes scale
by two times the horizontal phase
velocity:

a(x,t)/ Q(x,t)=-2c

This applies for earthquake signals
as well as for microseismic activity
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Ring Laser and Seismometer Data is filtered at the
Frequency Band of the microseismic Signal

- 2009/11/07 00:00-24:00 - Earthquake free day - Period 5-105

A clear correlation is also apparent in the comparison



There is a surprising high Consistency in this Procedure

2009/11/07 00:00-24:00 - Earthquake free day - Period 5-108
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In order to get the transversal acceleration, one
has fo rotate the signal of the two horizontal
seismometer components to the correct back-
azimuth.
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Love Surface Waves cycling around the Earth 4 times

(first observation!)
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amplitude [m/s* HZ"?]

Eigenmodes of the Earth
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Torsional mode, n=0, ¢ =5, |m|=4. period = 18 minutes

Source: http://icb.u-bourgogne.fr/nano/MANAPI/saviot/terre/index.en.html




Remaining Signature on the Interferogram
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e Backscatter Variations remain to be the most prominent Error
Source



cavity stabilization -> backscatter phase constant
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Raw data in 2012
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Ring Laser Performance (2012)
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This result is based on perimeter stabilization, backscatter however is
depending on the variation of all mirror distances



Backscatter effects:

Backscatter coupling between the clockwise and counterclockwise
beams is usually the largest source of systematic error.

Afs = Y2 fs mim, cos @

where M; and M, are the fractional beam modulations, and @ is the
phase angle between them.

For given mirror quality, m; and M, scale approximately as L3> for

cavity of linear size L.

Afs / fs scales approximately as L=> !I!

It is extremely important to maximize the size of the laser,

but keep it stable.



Strategy for the correction of backscatter effects:

e Currently under investigation.
o (Obvious first step) Select best available mirrors
e Most promising approach then appears to be a calculated correction based

on modulation of the clockwise and counterclockwise beams.

Result for G-0 laser 288.40

Sagnac frequency (Hz)

88.15
182.1000 184.1000
Time (2009 day number)




Backscatter Correction
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Scalefactor or Detector Systematics?
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Future Sagnac Interferometer for Fundamental Physics

GINGE 3D- Sensor

Larger Scale Factor
Active Stabilization
Deep Underground Installation

Shared Cavities with control of diagonals...

.. however we are affer a DC quantity!!!!
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