

Gran Sasso Summer Institute 2014

Lecture #1: Thermonuclear Reactions and Stellar Burning

THE UNIVERSITY of NORTH CAROLINA at Chapel Hill Prof. Christian Iliadis

History: Solar System Abundances

Willy Fowler (1911-95)

- Suess & Urey, Rev. Mod. Phys. 28, 53 (1956)
- Lodders, Palme & Gail, Landolt-Boernstein New Series VI/4B (Springer 2009)

Foundation of modern theory of nuclear astrophysics:

- Burbidge, Burbidge, Fowler and Hoyle, Rev. Mod. Phys. 29, 547 (1957)
- Cameron, Pub. Astron. Soc. Pac. 69, 201 (1957)

Nobel prize to Willy Fowler (1983)

Nuclear Reactions

Definition of cross section:

 $\sigma \equiv$

(number of interactions per time)

number of incident particles per area per time) (number of target nuclei within the beam) $N_0 N_t$

Unit: 1 barn=10⁻²⁸ m²

Example: ${}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + v$ (first step of pp chain)

 σ_{theo} =8x10⁻⁴⁸ cm² at E_{lab}=1 MeV [E_{cm}=0.5 MeV]

1 ampere (A) proton beam (6x10¹⁸ p/s) on dense proton target (10²⁰ p/cm²)

gives only 1 reaction in 6 years of measurement!

(i) why does the cross section fall drastically at low energies?

(ii) where is the peak in the cross section coming from?

Tunnel effect is the reason for the strong drop in cross section at low energies!

E (MeV)

Transmission Through the Coulomb Barrier

Comparison: S-factors and Cross Sections

Thermonuclear Reactions

For a reaction 0 + 1 \rightarrow 2 + 3 we find from the definition of σ (see earlier) a "reaction rate":

$$r_{01} = N_0 N_1 \int_0^\infty v P(v) \sigma(v) \, dv \equiv N_0 N_1 \langle \sigma v \rangle_{01}$$

For a stellar plasma: kinetic energy for reaction derives from thermal motion:

"Thermonuclear reaction"

For a Maxwell-Boltzmann distribution:

$$\langle \sigma v \rangle_{01} = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E \frac{\sigma(E)}{\sigma(E)} e^{-E/kT} dE$$

Interplay of Many Different Nuclear Reactions in Stellar Plasma

$$\frac{d(N_{25}_{Al})}{dt} = N_{H}N_{24}_{Mg}\langle \sigma v \rangle_{24}_{Mg(p,\gamma)} + N_{4}_{He}N_{22}_{Mg}\langle \sigma v \rangle_{22}_{Mg(\alpha,p)} \\ + N_{25}_{Si}\lambda_{25}_{Si(\beta^{+}\nu)} + N_{26}_{Si}\lambda_{26}_{Si(\gamma,p)} + \dots \\ - N_{H}N_{25}_{Al}\langle \sigma v \rangle_{25}_{Al(p,\gamma)} - N_{4}_{He}N_{25}_{Al}\langle \sigma v \rangle_{25}_{Al(\alpha,p)} \\ - N_{25}_{Al}\lambda_{25}_{Al(\beta^{+}\nu)} - N_{25}_{Al}\lambda_{25}_{Al(\gamma,p)} - \dots \end{cases} \right\}$$
 destruction

System of coupled differential equations: "nuclear reaction network"

Solved numerically

[Arnett, "Supernovae and Nucleosynthesis", Princeton University Press, 1996]

Important aspects:

(i) Gamow peak shifts to higher energy for increasing charges Z_p and Z_t

(ii) at same time, area under Gamow peak decreases drastically

Conclusion: for a mixture of different nuclei in a plasma, those reactions with the smallest Coulomb barrier produce most of the energy and are consumed most rapidly

Special case #2: Reaction Rates for "Narrow" Resonances (Γ_i const over total Γ)

Breit-Wigner formula (energy-independent partial widths)

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \,\sigma(E) \, e^{-E/kT} \, dE$$

$$= N_A \frac{\sqrt{2\pi}\hbar^2}{(m_{01}kT)^{3/2}} e^{-\frac{E_r}{kT}} \omega \frac{\Gamma_a \Gamma_b}{\Gamma} 2\pi$$

- resonance energy needs to be known rather precisely
- takes into account only rate contribution at E_r

"resonance strength" $\omega\gamma$:

- proportional to area under narrow resonance curve
- \bullet energy-dependence of σ not important

Total Thermonuclear Reaction Rate

Need to consider:

- non-resonant processes
- narrow resonances
- broad resonances
- subthreshold resonances
- interferences
- continuum

every nuclear reaction represents a special case !

Stellar Burning Stages

A first impression:

Hertzsprung-Russell Diagram: "Tracks"

Cat's Eye nebula (NGC 6543)

Effective surface temperature $T_{eff}(K)$

- heavy lines: major nuclear burning stages in stellar core
- evolution of star mainly determined by its mass:

larger mass:

- \rightarrow larger T and P in core
- \rightarrow faster nuclear energy generation
- → larger luminosity
- \rightarrow faster fuel consumption
- \rightarrow shorter lifetime

Betelgeuse (α Orionis)

II-2

зH

۱H

• 90% of Sun's energy produced by pp1 chain

<u>CNO2</u>	CNO3	CNO4
¹⁴ N(p,γ) ¹⁵ O	¹⁵ N(p,γ) ¹⁶ O	¹⁶ Ο(p, γ) ¹⁷ F
¹⁵ Ο(β ⁺ ν) ¹⁵ Ν	¹⁶ Ο(p,γ) ¹⁷ F	¹⁷ F(β ⁺ ν) ¹⁷ O
¹⁵ N(p,γ) ¹⁶ O	¹⁷ F(β ⁺ ν) ¹⁷ O	¹⁷ Ο(p, γ) ¹⁸ F
¹⁶ Ο(p,γ) ¹⁷ F	¹⁷ O(p,γ) ¹⁸ F	¹⁸ F(β ⁺ ν) ¹⁸ O
¹⁷ F(β ⁺ ν) ¹⁷ O	${}^{18}F(\beta^+ u){}^{18}O$	¹⁸ Ο(p,γ) ¹⁹ F
¹⁷ O(p,α) ¹⁴ N	¹⁸ Ο(p,α) ¹⁵ Ν	¹⁹ F(p,α) ¹⁶ O
		11-5

- ¹²C and ¹⁶O nuclei act as catalysts
- branchings: (p,α) stronger than (p,γ)
- ¹⁴N(p,γ)¹⁵O slowest reaction in CNO1 has been measured by LUNA/LENA
- solar: ¹³C/¹²C=0.01: CNO1: ¹³C/¹²C=0.25 ("steady state")
- T>20 MK: CNO1 faster than pp1

The Four Reaction Branchings in the CNO Cycles

A Closer Look at ¹²C+¹²C

II-13

Experimental binding energies per nucleon

Onion Shell Structure of Massive Star at Instant Before Core Collapse

J. Jose & C. Iliadis, "The Unfinished Quest for the Origin of the Elements", Rep. Prog. Phys. 74, 096901 (2011)

Reports on Progress in Physics

Jose & Iliadis, "Nuclear Astrophysics: the Unfinished Quest for the Origin of the Elements", Reports on Progress in Physics 74, 096901 (2011)

Recent review article

- (i) Why do predictions of helioseismology disagree with those of the standard solar model?
- (ii) What is the solution to the lithium problem in Big Bang nucleosynthesis?
- (iii) What do the observed light-nuclide and s-process abundances tell us about convection and dredge-up in massive stars and AGB stars?
- (iv) What are the production sites of the γ-ray emitting radioisotopes ²⁶Al, ⁴⁴Ti and ⁶⁰Fe?
- (v) What is the origin of about 30 rare and neutron-deficient nuclides beyond the iron peak (p-nuclides)?
- (vi) What causes core-collapse supernovae to explode?
- (vii) What is the extent of neutrino-induced nucleosynthesis (v-process)?
- (viii) What is the extent of the nucleosynthesis in proton-rich outflows in the early ejecta of core-collapse supernovae (vp-process)?
- (ix) What are the sites of the r-process?
- (x) What causes the discrepancy between models and observations regarding the mass ejected during classical nova outbursts?
- (xi) Which are the physical mechanisms driving convective mixing in novae?
- (xii) What are the progenitors of type Ia supernovae?
- (xiii) What is the nucleosynthesis endpoint in type I x-ray bursts? Is there any matter ejected from those systems?
- (xiv) What is the impact of stellar mergers on Galactic chemical abundances?
- (xv) What are the production and acceleration sites of Galactic cosmic rays?