Hands-on activity on CUORE's cryostat

Gran Sasso Summer Institute 22nd Sept. - 3rd Oct. Laboratori Nazionali del Gran Sasso

Tutor Dr. P. Gorla F. Piastra S. Marcocci

the cuore experiment

e looking for ονββ signal from¹³⁰Te

Bolometric technique with 988
 TeO2 crystals (206 kg of ¹³⁰Te)

o 5 keV average energy resolution

10 half-life sensitivity goal:
 1.6 × 10²⁶ yr (Syr Live time)

o Cryogenics needed because

 $\odot \Delta T = \Delta E/C \sim \Delta E/T^3$

0 AT/AE ~ 10-20 µK/MeV

T~ 10 mK !!

mk chermometry

- Cerium Magnesium Nitrate (CMN) thermometer
 Magnetic Field
 Fluctuations Thermometer (thermal noise SQUIDbased)
- Superconductive reference point sensor (SRD, suitable calibration device for the CMN and for the MFFT)

CMN calibration

- the output voltage V_{MIDS} of the system is proportional to X, so: $V_{MIDS}(T) = A + B / (T - A)$
- constants A, B and A to be calibrated for each sensor.

2.5

Temperature [K]

3

3.5

4.5

5

0.5

1.5

Noise l'hermometer

$$S(f,T) = \frac{S_0(T)}{(1 + (f/f_0)^{2a})^b}$$

Noise lhermometer fit

- Linearity over ~3 decades
 Relative uncertainty at 1%
 level in the mK region
 ~10% discrepancy with CMN
- at transition points

study of vibrations

Rotating Valve

- o 3 movable accelerometers
- @ 2 geophones inside the cryostat on 4K plate
- we implemented a simple DAQ system to
 acquire data in order to study the effects
 of:
 - @ Pulse Tubes
 - @ Blockage of the cryostat

Blockage of the plate (1)

- Sensors are on PT1's
 head on top of the
 300K plate
- Black = plate blocked
 Red = plate free

on PT1's head, vibrations are horizontal

Blockage of the plate (2)

- Sensors are on PT5's
 head on top of the
 300K plate
- @ Black = plate blocked
- @ Red = plate free

on PTS's head, vibrations are vertical

Blockage of the plate (3)

Blocking the plate generates <u>more</u> vibrations on the pulse tubes
Pulse Tubes are coupled to the plate in 2 different ways, in fact:
Rotating Valves 1 and 3 generate horizontal oscillations
Rotating Valves 4 and 5 generate horizontal oscillations

freeing the plate dumps the entire cryostat vibrations

red = free black = blocked

Single Pulse Tube contributions to vibrations • black = all PTs are off • green = PT3 and PT4 off

@ violet = only PTS on

PTS gives the biggest contribution

Conclusions

- We characterized the CMN and cross-checked with the noise thermometer
- We acquired and analyzed vibrations data:
 - o positive indications from the suspensions
 - positive indications from rotating values
 configuration

and we got new identities ...

... Paolo's Oompa-Loompas