Veto Scintillator testing with ABSuRD for CUORE

Johannes Rothe (Munich / Princeton) & Ritoban Basu Thakur (UIUC / Fermilab)

INFN / CUORE Mentors: Lucia Canonica & Carlo Bucci

ABSuRD: A Background-Surface Reduction Detector

Detector surfaces "polluted" with radioactive materials (α_s)

Limiting background for CUORE / $0\nu\beta\beta$ searches

Rare Background rejection at unprecedented levels !

ABSuRD: A Background-Surface Reduction detector

Understand scintillation at low T (< 100 K)

Need Silicon Photo Multiplier to measure scintillation

characterize photon detectors at low T

Break-down is largely independent of temperature (~30 V)

Operate at 32 V bias

Need good pulses & low "noise triggers"➡ good energy resolution.

Benchmark on total rate and photoelectron statistics

Find best operating temperature

Photon counting reveals optimal SiPM operations at 160-180 K

- ABSuRD will reduce surface (main) backgrounds for CUORE by utilizing scintillator cover around the detectors
- To study scintillators at low T we need to first characterize SiPM
- SiPM operating temperatures and bias voltages were explored
- Dark current data quality suggests operation around 160K and 32V

Extra Slides

SiPM

ASD-RGB4S-P-4x4TD

We use Silicon Photo Multiplier sensors

Photons excite electrons / holes leading to avalanche i.e. high amplification

Features

- Detection of extremely faint light
- Very high gain (10⁶)
- Extremely good timing performance
- Insensitive to magnetic fields
- Not damaged by ambient light
- Small and compact

Double beta decay probe

The possibility of Majorana neutrinos and the mass scale

Neutrino Physics: Motivation

Known

3 types of neutrinos from cosmology and particle physics measurements

Flavor(leptonic) eigenstates: v_{e} , v_{μ} , v_{τ}

Mass eigenstates: v_1 , v_2 , v_3

Types evidenced by mass differentials

These are measured in oscillating content of a neutrino beam

Ex: flavor modulation of NOVA's \mathbf{v}_{μ} beam with distance.

Neutrinos

Known

3 types of neutrinos from cosmology and particle physics measurements

Flavor / mass eigenstates: v_{e} , v_{μ} , v_{τ} / v_{1} , v_{2} , v_{3}

Unknown

What are the individual masses, mass scale and mass hierarchy?

Since mass > 0, spin > 0, and charge = 0, neutrinos can be their own antiparticle; are they ?

