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Intro

Introduction to a new Bayesian multivariate analysis framework for the
analysis of high energy soft diffraction

Classification analysis ∼ cross section estimation of the inelastic
pp-scattering processes

σinel , σSDL + σSDR + σDD + σND + (σCD) (1)

Probabilistic classification analysis also disintegrates differential inclusive
distributions such as dNch/dη, dE/dη, dpT/dη, f (pT ), f (∆η) into their

corresponding classes (e.g. dp
(DD)
T /dη etc.)
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Recap - definitions of soft diffraction

s-channel Good-Walker image where diffraction is understood as an
elastic or quasi-elastic scattering (absorption) of the eigenstates of
proton wave-function

t-channel vacuum object exchange (Pomeron, Regge pole (or branch
cut?) in complex ang.mom. plane). No color flow. In hard diffraction
BFKL/QCD image of Pomeron as a gluonic ladder exchange

Several unknowns

What are the eigenstates of soft diffraction (|t| . 0.5 . . . 2 GeV2), how to
treat low-mass dissociation, QCD image of soft diffraction, transition from
soft to hard diffraction, transition between diffraction and non-diffraction
(MPI/underlying event), the unified view between s- and t-channels...
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Traditional large rapidity gap (LRG) analysis

The de-facto kinematical signature of diffraction (coherence)

Search for a gap of ∆η ≥ 3 units (same as ξ = 1− pfz/p
i
z = M2

X/s ≤ 0.05)
by requiring no tracks or energy deposit over some experimental threshold
in the given η-interval.
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Ill-posedness of the large rapidity gaps

LRG can be destroyed e.g. by spectator parton re-scatterings or by
experimental reasons like calorimeter noise, fake tracks etc. or created
artificially by having too high pT -thresholds!

Due to random QCD fluctuations (which create ”exponentially suppressed”
LRGs), there is a background coming from non-diffractive events

High mass double diffractive events can in principle overlap in rapidity
η-space ⇒ experimental signature similar with non-diffractive events

No roman pots means that single and double diffraction are experimentally
severely non-uniquely distinguishable (distinquishable only in particular
mass ranges)
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Multivariate classification analysis
Use maximally all information embedded in the event topology, i.e. based on the fact that
the gaps do not carry all information about the events!

Instead of requiring LRGs, vectorize tracking (Nch, pT ) (and calorimetry)
information of an event over the available η-span into a continuous
random vector X ∈ R

d

Estimate event-by-event the probabilities of different processes

Posterior ∝ Density × Prior (2)

Now, assume there is a function fX : Rd → [0,∞) such that there exists
probability

P(X ∈ A) =

∫

A

fX(x) dx, (3)

where A ⊂ R
d is a domain with physically interesting event vector values.

The function fX is known as the total density function.
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Posterior ∝ Density × Prior
Golden rule idea behind Bayesian inference: Update your prior knowledge with the new
measurement

P(C = j |X = x) =
fX(x|j)P(j)

fX(x)
=

fj(x)Pj
∑|C|

j ′=1 fj ′(x)Pj ′

(4)

Densities fj
with j = 1, . . . , |C|, (C is a discrete set of scattering processes) encapsulate
the theoretical input about differential cross sections (e.g. triple Pomeron
1/M2

X ) + hadronization phase (e.g. Lund string) and experimental
detector effects (calorimeter response, track reconstruction efficiency...)
(GEANT)

Priors Pj

encapsulate the theoretical integrated cross sections, e.g. single diffraction

PSD ∝
∫ ∫

dM2
Xdt

d2σSD

dM2
X
dt

(MC) × triggering efficiency (geometrical

acceptance) (GEANT)
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Hard classifier (cut on the output distribution)
g : Rd

→ C

These can be seen as mappings

g : x 7→ {1, 2, . . . , |C|}. (5)

Decision rule mappings g define decision regions as

Rj = {x ∈ R
d : g(x) = (C = j)}, (6)

and thus Rj is the region in R
d where the posterior of class j is the

highest. These decision regions can be defined by affine hyperplanes or in
general, by nonlinear manifolds (or surfaces).

Bayes’ minimum error classifier, optimal in Bayesian sense, does the hard

classification according to

g⋆(x) = argmax
j=1,...,|C|

P(j |x) = argmax
j=1,...,|C|

fj(x)Pj , (7)
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What is the mathematical cost function to optimize?

- S/
√
S + B in a case of traditional cross-section measurement (well

understood background, i.e. 〈B〉 known) etc. assumptions

- S/
√
B when one wants to maximize significance (search for new

resonances etc.)

- Here instead, optimize the total classification accuracy, i.e. try to achieve
Bayes error rate. Theoretically, this lower bound for classification error is
given by

e(g⋆) = 1−
|C|
∑

j=1

∫

Rj

fj(x)Pj dx, (8)

which is always non-zero for a problem with overlapping class densities.
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A concrete algorithm - MLR-ℓ1
Estimate posteriori probabilities directly, instead of modelling class densities fj . A
so-called ”discriminative” approach.

Multinomial Logistic Regression with ℓ1-norm regularization, gives
posteriori probabilities through inner products 〈·, ·〉 in R

d between MC
trained weights wj and the event vector x

P(C = j |X = x;w) =
exp(〈wj , x〉)Pj

∑|C|
i=1 exp(〈wi , x〉)Pi

. (9)

”Training” is done with uniform class fractions, and thus we use explicit
priors Pj above. Exponential function guarantees the probabilistic output.
Sparsity ℓ1-regularization allows some interesting physical interpretations.

Note! By slight abuse of notation w := [wT
1 , . . . ,w

T
|C|]

T
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Concave (− convex) cost function
Convexity guarantees a unique solution, i.e. no problems with local extrema

Formally, conditional ML estimates are obtained by maximizing concave
cost function l : Rd|C| → R

l(w) =

n
∑

j=1

ln P(yj |xj ,w) =

n
∑

j=1





|C|
∑

i=1

y
(i)
j 〈wi , xj 〉 − ln

|C|
∑

i=1

exp(〈wi , xj 〉)



 ,

(10)

where n is the number of (MC) training vectors, yj ∈ {0, 1}|C| encodes
class targets (SD,DD,ND etc.).

With regularization, this is in an augmented functional form

ŵMAP = argmax
w

L(w) = argmax
w

[l(w) + log p(w)] , (11)

and the regularization (prior) distribution is here p(w) ∝ exp(−λ‖w‖ℓ1)
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Training the algorithm

The optimization rule of the ℓ1-regularized cost function is given by
maximizing 1

wT
(

∇(l(ŵ(k))− Bŵ(k)
)

+
1

2
wT (B− λΛ(k))w, (12)

where Λ(k) = diag
(

|ŵ (k)
1 |−1, . . . , |ŵ (k)

d(|C|−1)|−1
)

and the training data is

in B = −1
2 [I− 11T

|C| ]⊗
∑n

j=1 xjx
T
j (⊗ is the Kronecker tensor product).

Iterative algorithm

The iterative steps 1, 2, . . . , k , k + 1 of the training/optimization algorithm
are given by

ŵ(k+1) =
(

B− λΛ(k)
)−1 (

Bŵ(k) −∇l(ŵ(k))
)

, (13)

1B. Krishnapuram et al. Sparse Multinomial Logistic Regression, 2005.
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Regularization paths
ℓ1-regularization induces rapidity gaps as a limit when λ → ∞
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Figure : On y -axis the coefficients of wj in order: wi := (blue, green, red, light
blue, purple, yellow), with binning dη = (−3.6,−1.8,−0.9, 0, 0.9, 1.8, 3.6), such
that ηmin,max(wi) ∈ [di , di+1]. Variables are calorimeter deposits integrated over φ.
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Efficiency-Purity inversion
Important post-processing step due to highly non-diagonal confusion matrix. This step is
also needed in every LRG based analysis!

Define the so-called confusion matrix (with indicator function hI (j ; k) = 1,
if j = k , and 0 otherwise) as

[A]ij , Ex|C=i [hI (g(x); j)] = P(g(x) = j |C = i), (14)

which gives the conditional probability of classifying an event vector
originating from the i -th class to the j-th class.

1 Class-by-class (bin-by-bin) correction factors (substractive and/or
multiplicative)

2 Confusion matrix A regularized inversion (unfolding)

3 Use event-by-event posteriori probabilities, the most data-driven
method of these!
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Hard classification confusion matrix
The structure of this matrix depends on which priors were used to calculate it!

Table : Row normalized confusion matrix (4× 4) estimate, with class efficiencies
ǫj and purities πj , and total classification accuracy given by PYTHIA 6.x (with
CDF experiment GEANT4 simulation) and MLR-ℓ1 as a hard classifier.

SDL SDR DD ND ǫj
SDL 0.24 0.02 0.35 0.39 0.24
SDR 0.02 0.23 0.37 0.39 0.23
DD 0.13 0.13 0.43 0.31 0.43
ND 0.00 0.00 0.02 0.98 0.98

πj 0.48 0.47 0.41 0.90 Acc 0.82

Non-diffractive (ND) class dictates the structure of confusion matrix,
events are leaking into ND category but not vice versa!
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Cross-sections via probabilities
”Soft classification”, which is a mixture estimation problem.

It is well-known that conditional expectation values obey the so-called
iterated expectation relation

E[h(X,Y)] = E[E[h(X,Y)|Y]] = E[E[h(X,Y)|X]], (15)

where X,Y are random vectors and h(X,Y) some arbitrary function of
those.

Using this, some previous definitions (and the indicator function hI ), one
can show that integrating (summing) posteriori probabilities over an event
sample size of n results in

σk
σinel

∼= 1

n

n
∑

i=1

E[hI (C ; k)|X = xi ] (16)

=
1

n

n
∑

i=1

|C|
∑

j=1

hI (j ; k)P(j |xi ) � (17)
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Different philosophies to choose priors
Bayesian vs Frequentist inference...

1 Fully Bayesian, induce distributions for the priors Pj using domain
knowledge, and maybe some physical constraints as unitarity, Regge
factorization, some symmetry etc. and finally integrate over posteriors
→ a simple sampling algorithm needed  Bayesian credibility
intervals a natural side-effect

2 Point priors, semi-Bayesian where one uses e.g. priors from the given
MC model → Just use the Bayes’ formula shown earlier, no
computational complications

3 Maximum Marginal Likelihood, argmax{Pj}

∏n
i=1

∑|C|
j=1 fj(xi )Pj i.e.

maximize the denominator (evidence) in the Bayes’ formula over the
number of n events. No closed form solution, but iterative 	
Expectation Maximization (EM) algorithm can be derived (classic
frequentist mixture density problem)
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Pairwise posteriori probability distributions
Distributions below demonstrate the non-unique signature of real events
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Figure : CDF
√
s = 1.96 TeV 0-bias data, MLR-ℓ1 algorithm, PYTHIA 6.x MC.
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Nearly perfect reconstruction via probabilistic weighting
In figure Boosted Decision Tree (BDT) as a hard classifier, which generates biased
reconstruction
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Figure : Monte Carlo vs. multivariate algorithm output with MC input, PYTHIA
6.x MC, CDF experiment GEANT4 chain.
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Conclusions

Probabilistic multivariate approach can naturally handle the non-unique

experimental signature between diffraction / non-diffraction and deals
optimally with experimental limitations such as pT -thresholds.

But one should do both, traditional LRG based analysis and (probabilistic)
multivariate estimation!

By comparing results of these two kind of measurements, one could obtain
e.g. estimates of gap survival S2 values.

The problem of soft diffraction is so severely ill-posed that it requires the
best statistical inference approach there’s available.
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