Diffraction 2014

Primošten, Croatia 10-16 September 2014

QCD and Hadronic Final States

Jan Olsson, DESY for the H1 and ZEUS Collaborations

Topics: Recent H1 and ZEUS results on the Hadronic Final State at HERA

H1-Prelim-14-031

Measurement of Charged Particle Spectra in ep DIS at HERA

DESY 13-012, arXiv:1302.1321

 $E_e=27~{
m GeV}$ $E_p=920~{
m GeV}$ $\sqrt{s}=319~{
m GeV}$ $\sim 0.5~{
m fb}^{-1}/{
m exp}.$

HERA operation 1992-2007

H1 and ZEUS: High statistics data samples from HERA II, matched by highly improved control of **Experimental Uncertainties in Event and Jet Reconstruction** - Hadronic Final State - Kinematically overconstrained system in DIS: - In situ calibration of HFS Energy Scale - Charged tracks, Calorimeter clusters - Energy Flow algorithms, avoid Double Counting - Separate Jet Energy calibration - Jet Energy Scale uncertainty ~1% - Electron Energy Scale uncertainty: ~0.5 - 1% - Trigger and Acceptance uncertainties: 1 - 2% - Integrated Luminosity uncertainty: 1.8 – 2.5% Virtuality of exchanged boson NC DIS at HERA O^2 Q^2 x_{Bi} Bjorken scaling variable Inelasticity $(y=Q^2/sx_{Bi})$ y x_{Bj}

Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling α_s

DESY 14-089, arXiv:1406.4709 Subm. to EPJ C

4

- Jet Finding performed in Breit Frame 2xP+q=0- Only hard sub-processes generate large p_T Sensitivity to α_s and gluon density
- Inclusive k_T algorithm used for jet finding (anti-k_T algorithm similar results)
- Minimum Jet P_T required: $P_T^{jet} > 3 \text{ GeV}$

H1	Mul	tij	ets

Extended analys	is phase s	space
------------------------	------------	-------

$100 < Q^2 < 40000{\rm GeV}^2$	
0.08 < y < 0.7	
$-1.5 < \eta_{ m lab}^{ m jet} < 2.75$	
$P_{\rm T}^{\rm jet} > 3 { m ~GeV}$	
$3 < P_{\rm T}^{\rm jet} < 50 { m GeV}$	
	$\begin{split} 100 < Q^2 < 40000{\rm GeV}^2 \\ 0.08 < y < 0.7 \\ -1.5 < \eta_{\rm lab}^{\rm jet} < 2.75 \\ P_{\rm T}^{\rm jet} > 3{\rm GeV} \\ 3 < P_{\rm T}^{\rm jet} < 50{\rm GeV} \end{split}$

6

Extended Phase Space:

- Needed to handle migrations

at boundaries of the Measurement p.s.

Improves precision of Jet Measurements

Jan Olsson, DESY

Regularised Unfolding*

- Multidimensional Unfolding in Q2, y, P_T
- 4-fold Simultaneous Cross Section measurements of NC DIS, Inclusive Jets, Dijets and Trijets
- Statistical and systematic correlations taken into account
- Extended Phase Space handles migrations at boundaries, improves precision
- Absolute Jet Cross Sections, as well as Jet Cross Sections Normalised to σ_{NCDIS}
 - Large part of experimental uncertainties cancel
 - Note: PDF uncertainties do not cancel
- Final Differential Cross Sections in 64 bins

* TUnfold: S.Schmitt, arXiv:1205.6201

Jet Cross Sections, double differential in Q² and P_T^{jet}

Multijets

Ratios of Normalised Jet Cross Sections to NLO

Experimental precision

- Better than
 - **Theory uncertainties**

H1 Multijets

- Dominated by
 - Statistics,
 - Jet Energy Scale Uncertainty
 - MC Model uncertainty

Normalised Dijet Cross sections: Do lie below the NLO prediction in many places

Extraction of $\alpha_s(M_Z)$

- Jet Cross section measurements fitted with NLO theory Fit both absolute and normalised Jet Cross sections Fit Jet Cross sections both individually and simultaneously
- Iterative χ^2 minimisation, using Tminuit
- $\alpha_{s}(M_{z})$ free parameter
- Systematic errors handled as nuisance parameters in the fits

- Results consistent within total uncertainties
- Results consistent with world average
- Highest precision using Normalised Multijets measurements:

 $lpha_{s}(M_{Z})=0.1165\,(8)_{exp}\,(38)_{pdf,theo.}$

- Dijet results have lower values, but within total uncertainties - Trijet values have smallest errors ($\sim \alpha_{\circ}^2$)

NLO theory precision worse than experimental precision ==> NNLO calculations needed for jets!

Determination of α_s at various values of scale μ_r

H1 Multijets

H1:

- 5 fits, using Normalised Multijets Each fit based on cross section set with comparable values of μ_r
- α_s values with excellent precision
 from H1 Normalised Multijets

Prediction:

- RGE using α_s(M_z) value from H1 Normalised Multijets
- Predicted Running of α_S
 agrees well with other Jet Data
 over >2 orders of magnitude

 $lpha_s(M_Z) = 0.1165 \, (8)_{exp} \, (38)_{pdf,theo.}$ Most precise value derived so far from Jet Data, at NLO, in one single experiment

H1 in good agreement with other Jet Data

Trijet Production in Deep Inelastic Scattering at HERA

12

ZEUS-prel-14-008

Trijet Production in DIS at HERA

HERA II data, Integrated Luminosity 295 pb⁻¹ Phase Space: $125 < Q^2 < 20000 \text{ GeV}^2$

0.2 < y < 0.6

Jet finding in Breit frame

- Inclusive k_{T} algorithm
- Select events with at least 3 Jets: $E_{T,B}^{jet} > 8 \text{ GeV} -1 < \eta_{lab}^{jet} < 2.5$ $M_{jj} > 20 \text{ GeV}$
- 2199 events selected

Bin averaged Cross Sections differential in Q^2, x_{Bj}, ξ and $\overline{E_{T,B}^{jet}}$

 $\left(\ \overline{E_{T,B}^{jet}} \!=\! (E_{T,B}^{jet1} \!+\! E_{T,B}^{jet2} \!+\! E_{T,B}^{jet3})/3 \
ight)$

ZEUS-prel-14-008

NLO QCD Calculations:

- NLOJET++, HERAPDF1.5
- $\alpha_{s}(MZ) = 0.1176$

- Scales
$$\mu_r^2 = Q^2 + \langle E_T^{jet} \rangle^2 \quad \mu_f^2 = Q^2$$

 $\langle E_T^{jet} \rangle$ Average \mathbf{E}_{T} of 3 leading jets

Theory uncertainty: By varying scales x 2 / x 0.5 α_s(M_z) +/- 0.002

Trijet Single differential Cross Sections

Good agreement of NLO calc. with data, in shape and in normalisation

0.12

X_{Bj}

DIFF 2014 Primošten, Croatia 10-16.09.2014

Trijet Double Differential Cross Sections, Ratios Data/NLO-1

 $250 < Q^2 < 700 \text{ GeV}^2$

 $1300 < Q^2 < 5000 \text{ GeV}^2$

-1

ZEUS (prel.) 295 pb -1

jet energy-scale unc.

NLOJET++ (HERAPDF1.5)

-1.5

Trijets

-0.5

 $\log_{10}(\xi)$

Data sensitive to strong interaction dynamics and proton structure Use for α_{c} extraction and for PDF constraints

16

Search for QCD Instanton-Induced Processes in DIS at HERA

17

H1-Prelim-14-031

H1 QCD Instantons

Instantons

- Induce anomalous processes in Standard Model
- Non-perturbative fluctuations of Gluon field, tunneling between QCD vacua
- Their observation would be an important confirmation of
 - the Non-perturbative QCD part of SM
- Can they be observed at HERA, in quark gluon fusion events ?

Theory says Yes:

- Sizeable cross section predicted, 10-100 pb
- Theory and Phenomenology A.Ringwald, F.Schrempp a.o:

hep-ph/9411217, hep-ph/9609445, hep-ph/9806528, hep-ph/9903039, hep-ph/9909338, hep-ph/9911516, Hep-ph/0012241, hep-ph/0109032 H1 and ZEUS searches:

- early HERA I data
- No signal seen
- Upper limits
- Compatible with Theory predictions

H1:

DESY 02-062, hep-ex/0205078 ZEUS :

DESY 03-201, hep-ex/0312048

358 pb⁻¹ (17x larger than in previous search)

DIS Selection:

 $150\!<\!Q^2\!<\!15000~{\rm GeV^2}; \quad 0.2\!<\!y\!<\!0.7$

- Remove Current jet from HFS objects
- Boost remaining objects to I-band CMS
 - Charged Multiplicity n_B
 - Transverse Energy of "band" E_{T.B}
- Topological variables
 - E_{IN}, E_{OUT}, E_{T,Jet}
 - Isotropy $\Delta_{\rm B}$
 - Sphericity, Fox-Wolfram moments

H1 QCD Instantons

PDERS Discriminator distribution

Good Discriminator Description in background region ==> Signal region D > 0.86 (Gives smallest statistical error for a hypothetical Instanton signal)

Good description of Data by DJANGOH in both regions

The expected Instanton signal, > 500 events, is not seen Theory prediction: $\sigma_{QCDINS} = 10 \pm 2 \text{ pb}$

Thus:

no Signal, get Upper Limit

Upper Limit calculation, CLs method

H1 QCD Instantons

 CLs vs. Signal cross section: from toy MC experiments
 Background only (DJANGOH Signal + Background

- Signal + Background

- Upper Limit Conf. Level given by 1 - CLs

- Expected CLs-Median Limit: (Background Only hypothesis)

2.9^{+1.2,+2.8}_{-0.8,-1.3} pb at 95% C.L.

 Observed Upper Limit

 6 pb at 95% C.L.
 (lower than Median Expectation, due to downward fluctuation in data)

The Ringwald / Schrempp Prediction for this Phase Space: $\sigma_{QCDINS} = 10 \pm 2 \text{ pb}$

Seems to be excluded

Measurement of Charged Particle Spectra in ep DIS at HERA

DESY 13-012, arXiv:1302.1321 EPJ C73 (2013) 2406

Charged Particle Spectra in DIS at HERA

Hadron production in DIS:

- Transverse Momentum
 - At Low **p**_T

Constraints on Hadronisation parameters

- At High p_T

Sensitive to dynamics of Parton Evolution (since high p_T disfavored by strong p_T ordering)

$$\begin{array}{ll} -2 < \eta < 2.5 \\ p_T > 150 \ {\rm MeV} & {\rm LAB} \\ \hline 0 < \eta^* < 5 & {\rm HCMS} \\ 0 < p_T^* < 10 \ {\rm GeV} \end{array}$$

Central

 $0 < \eta^* < 1.5$

Current

 $1.5 < \eta^* < 5$

25

 γ – direction

H1 at HERA II
88.6 pb⁻¹ (2006 data)
$$5 < Q^2 < 100 \text{ GeV}^2$$

 $0.05 < y < 0.6$

Charged Particle Densities as functions of η^* and p_T^* differential in Q^2 and x_{Bj}

H1 Charged Particle Spectra

 Q^2

η^* dependence in Low and High p_T^* regions

H1 Charged Particle Spectra

- Low p_T* region:
- Flat plateau in η^*

Decrease at low values due to acceptance

- RAPGAP (DGLAP-like) describes data well
- Different PDFs Only small differences

High p_T* **region**:

- Density increase towards photon direction, as expected from strong p_T ordering
- RAPGAP below data
- Differences larger among PDFs

η^* dependence in Low and High p_T^* regions

H1 Charged Particle Spectra

RAPGAP with 3 different sets of hadronisation parameters

Low **p**_T* region:

Considerable differences

 between different parameter sets

 The LEP tuning (ALEPH)

 describes the data best

High p_T* region:

- Only small differences

between different parameter sets

- No set is able to describe data

Parton Shower Model Dependence

DJANGOH: PS from CDM (ARIADNE) RAPGAP: Collinear PS, virtuality ordered

Low **p**_T* region:

- CASCADE fails description- Other models describe data

H1 Charged Particle Spectra

CASCADE: angularly ordered, CCFM PS HERWIG++: Collinear PS,

angularly ordered

29

High p_T^* region: η^* dependence in bins of Q^2 , x H1 Charged Particle Spectra

- No model with good description in full range

- CDM (DJANGOH) Best description

- RAPGAP, HERWIG (collinear PS models) Fail at low Q², get better at higher Q²

- CCFM (CASCADE) OK at low x and low Q² Fails at large Q²

30

p_T* dependence in Central and Current regions H1 Charged Particle Spectra

Sensitivity to higher order radiation

Sensitivity to hard scattering

Collinear PS models (RAPGAP, HERWIG++) fail, particularly at high p_T*

SUMMARY

- The Hadronic Final State, in NC DIS at HERA: New Results from H1 and ZEUS, using high statistics HERA II data

Multijet Cross Section Measurements from H1 and ZEUS

- Double Differential Jet Cross Sections, in Q^2 , P_T^{jet} and ξ
 - H1: Inclusive Jets, Dijets and Trijets, ZEUS: Trijets
- Good description of data by NLO pQCD calculations
- Experimental Precision of Jet measurements better than NLO Precision NNLO calculations for Jets needed !
- H1: Most precise $\alpha_{s}(M_{Z})$ extraction (so far) from Jet measurements, $\alpha_{s}(M_{Z}) = 0.1165 \ (8)_{exp} \ (38)_{pdf,theo.}$
- α_s runs, in agreement with RGE and with other Jet Data results

H1: Search for QCD-Instanton Induced Processes

- No signal found, Upper Limit $\sigma_{\text{Instanton}} < 1.6 \text{ pb}, 95\% \text{ C.L.}$
- Ringwald / Schrempp prediction: 10 +/- 2 pb Seems to be excluded
- H1: Charged particle Spectra Measurements
 - Particle Densities as function of p_T^* and η^* , differential in Q2, x
 - Enable extensive tests of Hadronisation and Parton Shower Models

Backup

Upper Limit calculation, CLs method

- Test Statistics N_{bin} $X = \sum w_i n_i$ i=1

Sum over all bins in D

- For better sensitivity, use full D range (0 - 1)
- Perform toy MC experiments
 - Background only (DJANGOH)

 $CL_S = CL_{SB}/CL_B$

- Signal + Background

Upper Limit Confidence Level: $1 - CL_S$