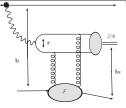
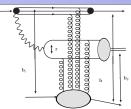
Exclusive photoproduction of J/ψ and $\psi(2S)$ in pp and AA collisions

Wolfgang Schäfer ¹


¹ Institute of Nuclear Physics, PAN, Kraków


Diffraction 2014 Primosten, Croatia, 10-16 September 2014

Anna Cisek, W.S. and Antoni Szczurek, arxiv:1405.2253

$pp \to pJ/\psi p$ - diffractive excitation of the Weizsäcker-Williams photons

- Born: $\Gamma^{(0)}(r, b_V) = \frac{1}{2} \sigma(r) t_N(b_V)$
- Absorbed:

$$\Gamma(r, b_V, b) = \Gamma^{(0)}(r, b_V) - \frac{1}{4}\sigma(r)\sigma_{qqq}(\{b_i\})t_N(b_V)t_N(b)$$

$$= \Gamma^{(0)}(r, b_V)\left(1 - \frac{1}{2}\sigma_{qqq}(\{b_i\})t_N(b)\right) \to \Gamma^{(0)}(r, b_V) \cdot S_{el}(b)$$

W.S. & A. Szczurek (2007).

- lacktriangle strong spectator interactions are short-range in $m{b}$ -space, but γ -exchange is long-range o smallish absorptive corrections
- dipole cross section ↔ unintegrated glue

$$\sigma(x, r) = \frac{4\pi}{3} \int \frac{d^2 \kappa}{\kappa^4} [1 - \exp(-i\kappa r)] \mathcal{F}(x, \kappa)$$

$$\bar{Q}^2 \sim (Q^2 + M_V^2)/4 \leftrightarrow r \sim r_S \approx \frac{1}{\bar{Q}} \;, \; \text{for} J/\psi : \; \bar{Q}^2 \sim 2.5 \; \text{GeV}^2 \label{eq:Q2}$$

The production amplitude for $\gamma p \rightarrow J/\psi p$

The imaginary part of the amplitude can be written as:

$$\Im m \, \mathcal{M}_{\mathcal{T}}(W, \Delta^{2} = 0, Q^{2} = 0) = W^{2} \frac{c_{V} \sqrt{4\pi \alpha_{em}}}{4\pi^{2}} \int_{0}^{1} \frac{dz}{z(1-z)} \int_{0}^{\infty} \pi dk^{2} \psi_{V}(z, k^{2}) \int_{0}^{\infty} \frac{\pi d\kappa^{2}}{\kappa^{4}} \alpha_{S}(q^{2}) \mathcal{F}(x_{eff}, \kappa^{2}) \left(A_{0}(z, k^{2}) \, W_{0}(k^{2}, \kappa^{2}) + A_{1}(z, k^{2}) \, W_{1}(k^{2}, \kappa^{2})\right)$$

where

$$\begin{split} A_0(z,k^2) &= m_c^2 + \frac{k^2 m_c}{M_c \bar{c} + 2 m_c} \,, \, M_{c\bar{c}}^2 = \frac{k^2 + m_c^2}{z(1-z)} \\ A_1(z,k^2) &= \left[z^2 + (1-z)^2 - (2z-1)^2 \frac{m_c}{M_c \bar{c} + 2 m_c} \right] \frac{k^2}{k^2 + m_c^2} \,, \\ W_0(k^2,\kappa^2) &= \frac{1}{k^2 + m_c^2} - \frac{1}{\sqrt{(k^2 - m_c^2 - \kappa^2)^2 + 4 m_c^2 k^2}} \,, \\ W_1(k^2,\kappa^2) &= 1 - \frac{k^2 + m_c^2}{2k^2} \left(1 + \frac{k^2 - m_c^2 - \kappa^2}{\sqrt{(k^2 - m_c^2 - \kappa^2)^2 + 4 m_c^2 k^2}} \right) \,. \end{split}$$

Cross section for $\gamma p \to J/\psi(\psi') p$

The full amplitude:

$$\mathcal{M}_{\mathcal{T}}(W, \Delta^2) = (i + \rho_{\mathcal{T}}) \Im m \mathcal{M}_{\mathcal{T}}(W, \Delta^2 = 0, Q^2 = 0) \exp(-B(W)\Delta^2/2).$$

where

$$\rho_T = \frac{\Re e \mathcal{M}_T}{\Im m \mathcal{M}_T} = \frac{\pi}{2} \frac{\partial \log \left(\Im m \mathcal{M}_T / W^2\right)}{\partial \log W^2} = \frac{\pi}{2} \Delta_{\mathbf{P}},$$
$$B(W) = B_0 + 2\alpha'_{\text{eff}} \log \left(\frac{W^2}{W_0^2}\right).$$

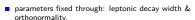
Total cross section can be written as:

$$\sigma_{T}(\gamma p \rightarrow J/\psi p) = \frac{1 + \rho_{T}^{2}}{16\pi B(W)} \left| \frac{\Im m \mathcal{M}_{T}(W, \Delta^{2} = 0, Q^{2} = 0)}{W^{2}} \right|^{2}$$

Parameters/input to the diffractive amplitude

 frame-independent radial LCWF depends on the invariant

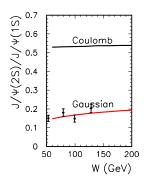
$$p^2 = \frac{1}{4} \left(\frac{\mathbf{k}^2 + m_c^2}{z(1-z)} - 4m_c^2 \right)$$

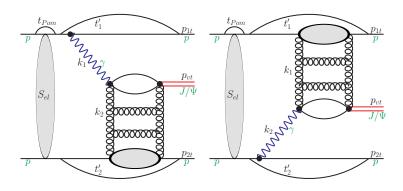

"Gaussian" parametrization:

$$\begin{array}{rcl} \psi_{1S}(z,\mathbf{k}) & = & C_1 \exp(-\frac{p^2 a_1^2}{2}) \\ \\ \psi_{2S}(z,\mathbf{k}) & = & C_2(\xi_0 - p^2 a_2^2) \exp(-\frac{p^2 a_2^2}{2}) \end{array}$$

"Coulomb" parametrization:

$$\psi_{1S}(z, \mathbf{k}) = \frac{C_1}{\sqrt{M}} \frac{1}{(1 + a_1^2 p^2)^2}$$


$$\psi_{2S}(z, \mathbf{k}) = \frac{C_2}{\sqrt{M}} \frac{\xi_0 - a_2^2 p^2}{(1 + a_2^2 p^2)^3}$$



- 2 Kutak-Stasto linear, a solution to BFKL-type evol. with kinematic constraints
- **Kutak-Stasto nonlinear**, includes a BK gluon fusion term.

$pp o p \ J/\psi(\psi') \ p$ with absorptive corrections

photon-Pomeron

Pomeron-photon

- absorption is accounted at the amplitude level and strongly depends on kinematics.
- elastic rescattering is only the simplest option we will allow for an enhancement of absorption by a factor 1.4.
- possible competing mechanism: the Pomeron-Odderon fusion.

Helicity conserving and helicity flip amplitudes

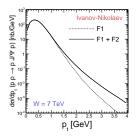
structure of e.m. current:

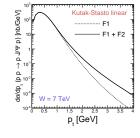
- lacktriangleright pointlike fermion: γ_{μ} vertex conserves helicity at high energies.
- proton has also Pauli-coupling, which leads to a nonvanishing spin-flip at high energies.
- For photons with $z \ll 1$ we can write:

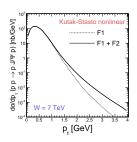
$$\langle \boldsymbol{\rho}_{1}^{\prime}, \lambda_{1}^{\prime} | J_{\mu} | \boldsymbol{\rho}_{1}, \lambda_{1} \rangle \epsilon_{\mu}^{*}(\boldsymbol{q}_{1}, \lambda_{V}) = \frac{(\boldsymbol{e}^{*(\lambda_{V})} \boldsymbol{q}_{1})}{\sqrt{1 - z_{1}}} \frac{2}{z_{1}} \cdot \chi_{\lambda^{\prime}}^{\dagger} \left\{ F_{1}(Q_{1}^{2}) - \frac{i\kappa_{p} F_{2}(Q_{1}^{2})}{2m_{p}} (\boldsymbol{\sigma}_{1} \cdot [\boldsymbol{q}_{1}, \boldsymbol{n}]) \right\} \chi_{\lambda}$$

 \blacksquare we neglect the possible helicity flip in the Pomeron-proton coupling, due to the smallness of r_5 .

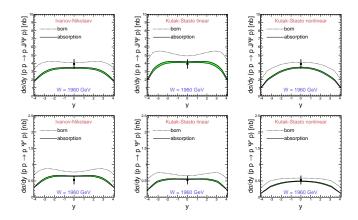
The full amplitude for the $pp \rightarrow pVp$ process can be written as:


$$\mathcal{M}_{h_1h_2 \to h_1'h_2'V}^{\lambda_1\lambda_2 \to \lambda_1'\lambda_2'\lambda_V}(s, s_1, s_2, t_1, t_2) = \mathcal{M}_{\gamma \mathbf{P}} + \mathcal{M}_{\mathbf{P}\gamma}$$

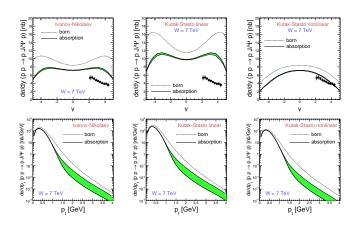

$$= \langle p_1', \lambda_1' | J_{\mu} | p_1, \lambda_1 \rangle \epsilon_{\mu}^*(q_1, \lambda_V) \frac{\sqrt{4\pi\alpha_{em}}}{t_1} \mathcal{M}_{\gamma^*h_2 \to Vh_2}^{\lambda_{\gamma^*}\lambda_2 \to \lambda_V \lambda_2}(s_2, t_2, Q_1^2)$$


$$+ \langle p_2', \lambda_2' | J_{\mu} | p_2, \lambda_2 \rangle \epsilon_{\mu}^*(q_2, \lambda_V) \frac{\sqrt{4\pi\alpha_{em}}}{t_2} \mathcal{M}_{\gamma^*h_1 \to Vh_1}^{\lambda_{\gamma^*}\lambda_1 \to \lambda_V \lambda_1}(s_1, t_1, Q_2^2)$$

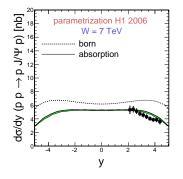
Dirac vs Pauli form factors (Born)

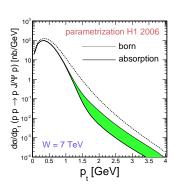


- Pauli form factor changes the p_t -shape of elastic contribution at larger p_t . Significant effect for $p_t \gtrsim 1.5 \, \mathrm{GeV}$.
- \blacksquare At very large p_t we get an enhancement factor of the cross section of order of 10.
- \blacksquare p_t distribution is an important tool for the Odderon searches.


Comparison of J/ψ and ψ' central exclusive to Tevatron data

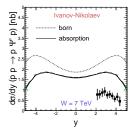
■ CDF Collaboration, T.Aaltonen et al., Phys. Rev. Lett. 102 (2009)

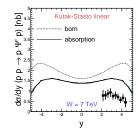

Comparison to LHCb data

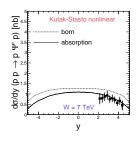


- R. Aaij et al. (LHCb collaboration), arXiv:1401.3288 [hep-ex]
- the band shows variation in strength of absorption. Substantial uncertainty in the large p_t region.

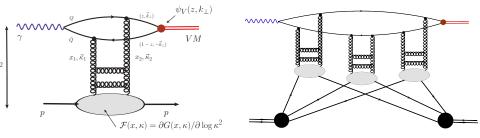
Extrapolation of the HERA data





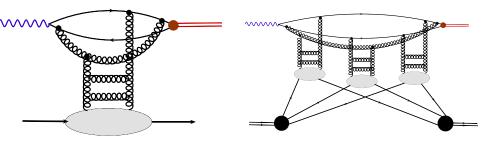

Cross section for $\gamma p \to J/\psi p$ parametrized in the power-like form fitted to HERA data

Excited state ψ'



- R. Aaij et al. (LHCb collaboration), arXiv:1401.3288 [hep-ex]
- Absorption may be bigger

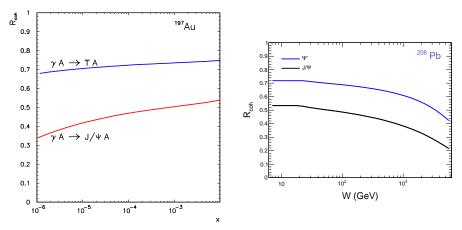
VM photoproduction from nucleon to nucleus:



- for heavy nuclei rescattering/absorption effects are enhanced by the large nuclear size
- \blacksquare $q\bar{q}$ rescattering is easily dealt with in impact parameter space
- the final state might as well be a (virtual) photon (total photoabsorption cross section) or a $q\bar{q}$ -pair (inclusive low-mass diffraction).
- Color-dipole amplitude

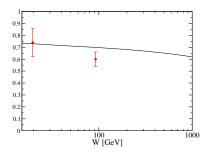
$$\Gamma(\boldsymbol{b}, \boldsymbol{x}, \boldsymbol{r}) = 1 - \frac{\langle A | Tr[S_q(\boldsymbol{b}) S_q^{\dagger}(\boldsymbol{b} + \boldsymbol{r})] | A \rangle}{\langle A | Tr[\mathbf{1}] | A \rangle}$$

Small-x evolution: adding $q\bar{q}(ng)$ Fock-states


- the effect of higher $q\bar{q}g$ -Fock-states is absorbed into the x-dependent dipole-nucleus interaction Nikolaev, Zakharov, Zoller / Mueller '94
- evolution of unintegrated glue Balitsky Kovchegov '96 -' 98:

$$rac{\partial \phi(m{b}, x, m{p})}{\partial \log(1/x)} = \mathcal{K}_{BFKL} \otimes \phi(m{b}, x, m{p}) + \mathcal{Q}[\phi](m{b}, x, m{p})$$

- contains a "gluon mass" $\mu_G \sim .7 \, \mathrm{GeV}$.


Coherent diffractive production of $J/\Psi, \psi(2S), \Upsilon$ on ²⁰⁸Pb

- left panel A. Cisek, WS, A. Szczurek Phys. Rev C86 (2012) 014905.
- Ratio of coherent production cross section to impulse approximation

$$R_{\mathrm{coh}}(W) = \frac{\sigma(\gamma A \to VA; W)}{\sigma_{IA}(\gamma A \to VA; W)} , \ \sigma_{IA} = 4\pi \int d^2b T_A^2(b) \frac{d\sigma(\gamma N \to VN)}{dt}_{|t=0}$$

The putative gluon shadowing: ¬

- an extraction of $\sqrt{R_{\mathrm{coh}}}$ from ALICE $PbPb \to J/\psi PbPb$ data by Guzey et al. (2013).
- lacksquare in the collinear approach: "gluon shadowing": $R_{\mathrm{coh}} \sim [g_A(x, \bar{Q}^2)/(A \cdot g_N(x, \bar{Q}^2))]^2$.
- the putative "gluon shadowing": $R_G = \sqrt{R_{\rm coh}(x\sim 10^{-3})} \sim 0.7$.
- for illustration: $R_G(x, m_c^2) \equiv g_A(x, m_c^2)/(A \cdot g_N(x, m_c^2))$ from popular DGLAP fits:
- EPS09: $R_G(10^{-3}, m_c^2) \sim 0.6$, EPS08: $R_G(10^{-3}, m_c^2) \sim 0.3$
- Inclusive dijet observables depend on unintegrated nuclear glue nonlinearly.

Conclusions

- We have compared our results with recent HERA $(\gamma p \longrightarrow J/\psi(\psi') p)$ and LHCb $(pp \longrightarrow p J/\psi(\psi') p)$ data.
- lacktriangledown In photoproduction of heavy quarkonia, the large quark mass ensures dominance of small dipoles ightarrow pQCD.
- Absorptive corrections are a strong function of kinematics. At large p_T , relevant for Odderon searches, the Pauli coupling needs to be included. There is a sizeable uncertainty due to absorption in the p_T distribution.
- Coherent diffraction on the nucleus is a sensitive probe of the (unintegrated) gluon distribution of the target nucleus. Rescattering/saturation effects entail that the unintegrated glue enters inclusive dijet observables nonlinearly.
- "gluon shadowing" is included via the rescattering of higher $Q\bar{Q}g$ Fock states. The effective "gluon shadowing" ratio $R_G(x,m_c^2)\sim 0.74\div 0.62$. For $x\sim 10^{-2}\div 10^{-5}$. ALICE data appear to indicate somewhat stronger effect $R_G(10^{-3},m_c^2)\div 0.6$.
- \blacksquare smaller nuclear suppression for $\psi'(2S)$ appears to be a possibility.

