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Green function for BFKL equation with running coupling (L.O.)

∫
dt′′

[

ωδ(t− t′′)−αs(t)K (t, t′′)
]

Gω(t
′′, t′) = δ(t− t′)

t ≡ ln

(

k2

T

Λ2

)

.

∫
dt′K (t, t′)φν(t

′) = χ(ν)φν(t)

χ(ν) = 2ℜe

{

Ψ(1)−Ψ

(

1

2
+ iν

)}
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Simplified Model - (diffusion approximation)

χ(ν) = a− bν2, a = 4ln2, b = 14ζ(3)

αs(t) =
1

βt
, (no threshold in β)

Equation for Green function
[

(βωt− a)− b
∂2

∂t2

]

Gω(t, t
′) = δ(t− t′), (Airy equation)

Solutions Ai(z), Bi(z) where

z =

(

βω

b

)1/3(

t−
a

βω

)

Ai(z)
t→∞
→ 0 (good UV solution) , Bi(z)

t→∞
→ ∞ (bad UV solution)
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Green function which obeys the UV boundary condition

Gω(t, t
′) = Bi(z)Ai(z′)θ(t′− t)+Ai(z)Bi(z′)θ(t− t′)

But this is not unique
Solution may be generalized by replacing Bi by

Bi(z) = Bi(z)+
cos(φ(ω))

sin(φ(ω))
Ai(z)

As t →−∞ (IR limit)

Bi(z) → ∼
1

sin(φ(ω))
sin

(

φ(ω)−
π

4
−

2

3
(t− a/(βω))3/2

)

Poles wherever φ(ω) = nπ, determined by (non-perturbative) IR phase
of oscillation as t →−∞
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Determination of IR Phase

Either:
Fit to Data
or
Use a model. e.g.

1. Effective gluon mass in IR limit (E.Levin, L.N. Lipatov, M.
Siddikov - 2014)

2. BFKL equation at non-zero temperature, T, which serves as an
IR boundary. (H. de Vega, L.N.Lipatov - 2014)
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Case of real L.O. BFKL equation

χ(ν) = 2ℜe

{

Ψ(1)−Ψ

(

1

2
+ iν

)}

Green function may also be expressed ( in semi-classical
approximation) by

Gω(t, t
′) = Bi(z)Ai(z′)θ(t′− t)+Bi(z′)Ai(z)θ(t− t′)

z =

[

3

2

∫ t

tc

νω(t
′)dt′

]2/3

χ(νω(t)) =
ω

αs(t)
, and νω(tc) = 0
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Application in DIS
Unintegrated gluon density ġ(x, t) ≡ ∂

∂t
g(x, t) is given by

ġ(x, t) =

∫
C

dωdt′x−ωGω(t, t
′)ΦP(t

′)

where ΦP(t) is the proton impact factor, which encodes the coupling
of the BFKL pomeron to the proton (this is the only
process-dependent factor)

The integral is over a contour to
the right of all the poles of Gω.

The integrand has a saddle-
point, ωs located at

lnx =
∂

∂ω
{ln(Ai(zω(t)))}|ω=ωs

.

.

xxxxx

|ω

C

poles
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For sufficiently large t, the saddle-point is to the right of all the poles
of Gω

.

.
|ω

xxxxxxx
ω1 ωs

C

For ω ≫ 4CA ln2αs(t)/π, the saddle-point approximation gives a gluon
density whose t-dependence matches that of DGLAP in the DLL limit.
The discrete poles affect the overall normalization of the gluon density
but NOT its t-dependence
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On the other hand, if t is not sufficiently large, the saddle-point(s) lies
to the left of one or more of the discrete poles.

.

|ω

xxxxxx
ω1

ωs

C

In this case, a contour which passes through the saddle-point(s) must
also surround one or more poles and the expression for the
unintegrated gluon density becomes

ġ(x, t) ≈ Cωs x
−ωs

∫
dt′Gωs(t, t

′)ΦP(t
′) + ∑

ωn>ωs

Anx−ωnAi (zωn(t))

The contribution from the poles is important - they dominate at
sufficiently low x.
The DLL limit of DGLAP is not a good approximation in this region
of t.
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Numerical Example

Non-perturbative phase fixed at

η =
π

4
, for k0 ≡ kT = 1Gev

i.e. poles for values of ω satisfying

∫ t0

tc

νω(t
′)dt′ =

(

n−
1

2

)

t0 ≡ ln

(

k2

O

Λ2

)

, αs(tc) =
ω

4ln2

Green function is convoluted with proton impact factor which is
strongly peaked at 1 GeV
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Imaginary part of x−ωGω along a contour close to real axis

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

G
ω

ω

Q=100 GeV

Position of poles fixed, but their residue are t-dependent and oscillate
if t < tc.
i.e. residue of pole at ω = ωn oscillates if

αs(t) <
ω

4ln2
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Real part of x−ωGω along a contour close to real axis

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

R
e[

x-ω
  G

ω
 ]

ω

Q=100 GeV, x=0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

R
e[

x-ω
  G

ω
 ]

ω

Q=100 GeV, x=0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

R
e[

x-ω
  G

ω
 ]

ω

Q=100 GeV, x=0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

R
e[

x-ω
  G

ω
 ]

ω

Q=100 GeV, x=0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

R
e[

x-ω
  G

ω
 ]

ω

Q=100 GeV, x=0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

R
e[

x-ω
  G

ω
 ]

ω

Q=100 GeV, x=0.01

Saddle-point visible above the leading pole, but still too close to the
leading pole for the saddle-point contribution to dominate.
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 1  10  100  1000

x 
g(

x)

Q (GeV)

x=0.02

Oscillatory behaviour for Q < 200 GeV arises because of influence of
subsidiary poles with oscillating residues.
Asymptotic region only begins for Q >∼ 500 GeV.
Note threshold at Q = 2mt (350 GeV) so we cannot be “asymptotic”
below that scale.
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 1  10  100  1000

xg
(x

)

Q (GeV)

x=0.001

For x = 10
−3 the influence of subsidiary poles is much smaller because

residue at ω = ωn is proportional to

x−ωn

- falls off fast as ω → 0 for smaller x.
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DGLAP in the DLL approximation

Range of validity
1 ≫ ω ≫ αs(t)

(not a lot of room for αs(t)∼ 0.1)

ln

(

F2(x,Q
2)
)

= ln

(

F2(x,Q
2

0)
)

+

√

4CA

πβ0

ln

(

ln(Q2/Λ2)

ln(Q2

0
/Λ2)

)

ln

(

1

x

)

Depends on initial fit value Q0.
β0 has flavour thresholds up to Q = 2mt.
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Comparison with DLL for x = 10
−2
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For x = 10
−2 the agreement with th DLL is very poor even at

Q = 1TeV.
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Comparison with DLL for x = 10
−3

 

 

 

 

 

 

 1  10  100  1000

x 
g(

x)

Q (GeV)

x=0.001
DLL

For x = 10
−3 there is reasonable agreement with DLL limit for

Q > 500 GeV.
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SUMMARY

◮ We have a formalism for determining the (universal) Green
function for the BFKL equation with running coupling and IR
boundary condition given in terms of the phase of the oscillation
phase.
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SUMMARY

◮ We have a formalism for determining the (universal) Green
function for the BFKL equation with running coupling and IR
boundary condition given in terms of the phase of the oscillation
phase.

◮ A numerical example confirms an (unintegrated) gluon density
that rises with Q2, consistent with a DGLAP approach.
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SUMMARY

◮ We have a formalism for determining the (universal) Green
function for the BFKL equation with running coupling and IR
boundary condition given in terms of the phase of the oscillation
phase.

◮ A numerical example confirms an (unintegrated) gluon density
that rises with Q2, consistent with a DGLAP approach.

◮ The match with DGLAP in the DLL limit is probably only
numerically accurate for very large rapidities (low-x) and high
Q2. (possible even outside the reach of LHC.) - but a more
careful fit using the non-perturbative phase and photon impact
factor as free parameters still has to be investigated.
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