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Green function for BFKL equation with running coupling (L.O.)

/dt” [08(t—1") — o (1) K (1,1")] Gu(1",1) = 8(1—1)

t—ln<

/ Al K (1,1 )0 (1) = 1(v)0u(1)

x(v) = 2Re {‘P(l) -¥ (% +iv>}

: :
THE GREEN FUNCTION FOR THE DISCRETE BFKL POMERON Diffraction2014, Primosten September 2014
e




Simplified Model - (diffusion approximation)

x(V) = a—bv?, a=4In2, b=14{(3)
os(f) = =, (no threshold in B)
Equation for Green function

2
{(Bmt —a)— bg?] Go(t,t') = 8(t—1), (Airy equation)

Solutions Ai(z), Bi(z) where

Ai(z) 250 (good UV solution) , Bi(z) "= eo (bad UV solution)
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Green function which obeys the UV boundary condition
Go(t,!) = Bi(z)Ai(Z)8(f —1)+Ai(z)Bi(Z)8(t—1")

But this is not unique
Solution may be generalized by replacing Bi by

i pe s, COS(0(@))
Bi(z) = Bl(z)+mAl(Z)

As t — —oo (IR limit)
Bl(Z) — o~ m sin <¢(0)) — Z _ % (t_a/(Bm))3/2>

Poles wherever ¢(®) = nx, determined by (non-perturbative) IR phase
of oscillation as t — —oo
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Determination of IR Phase

Either:

Fit to Data

or

Use a model. e.g.

1. Effective gluon mass in IR limit (E.Levin, L.N. Lipatov, M.
Siddikov - 2014)

2. BFKL equation at non-zero temperature, 7', which serves as an
IR boundary. (H. de Vega, L.N.Lipatov - 2014)
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Case of real L.O. BFKL equation

x(v) = 2Re {\P(l) -¥ <% +iv>}

Green function may also be expressed ( in semi-classical
approximation) by

Go(t,!) = Bi(z)Ai(Z)8(f — 1)+ Bi(Z)Ai(z)0(t—1")

: 2/3
z = B/t vm(t’)dt’}
1(Vo(1)) = %“(’t), and Ve(i) = 0
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Application in DIS
Unintegrated gluon density g(x,7) = % g(x,1) is given by

/dmdt’ 0 Go(t,1)Pp(t)

where ®p(t) is the proton impact factor, which encodes the coupling
of the BFKL pomeron to the proton (this is the only
process-dependent factor)

The integral is over a contour to |w
the right of all the poles of G.

The integrand has a saddle-
point, ®; located at

Inx = %{ln(Ai(Zﬂ)(t)))hm:ms poles

C
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For sufficiently large ¢, the saddle-point is to the right of all the poles
of Gy

For @ > 4C4In204(t)/®, the saddle-point approximation gives a gluon
density whose t-dependence matches that of DGLAP in the DLL limit.
The discrete poles affect the overall normalization of the gluon density
but NOT its ~-dependence
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On the other hand, if ¢ is not sufficiently large, the saddle-point(s) lies
to the left of one or more of the discrete poles.

"‘\\\\ IH

QI

In this case, a contour which passes through the saddle-point(s) must
also surround one or more poles and the expression for the
unintegrated gluon density becomes

§050) = Co™ [dGa0100) + T A0, (0)

Wy, >0y

The contribution from the poles is important - they dominate at
sufficiently low x.

The DLL limit of DGLAP is not a good approximation in this region
of .
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Numerical Example

Non-perturbative phase fixed at
T
n= Z’ for ko = kr = 1Gev

i.e. poles for values of ® satisfying

Green function is convoluted with proton impact factor which is
strongly peaked at 1 GeV
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Imaginary part of x" G, along a contour close to real axis

Q=100 GeV'

L L L L L L L L L L

o 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 11

Position of poles fixed, but their residue are t-dependent and oscillate
ift < t,.
i.e. residue of pole at @ = w, oscillates if

(O]
(1) < 72
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Real part of x"®G, along a contour close to real axis

Q=100 GeV, x=0.01 ——

Re[x® G,

1 11

o 0.1 0.2 03 04 05 0.6 0.7 08 0.9

Saddle-point visible above the leading pole, but still too close to the
leading pole for the saddle-point contribution to dominate.
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x=0.02 ——

xg(x)

L L
1 10 100 1000
Q(GeV)

Oscillatory behaviour for Q < 200 GeV arises because of influence of
subsidiary poles with oscillating residues.

Asymptotic region only begins for Q >~ 500 GeV.

Note threshold at Q = 2m; (350 GeV) so we cannot be “asymptotic”
below that scale.
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xg(x)

L
1 10

.
100 1000
Q (Gev)

For x = 1073 the influence of subsidiary poles is much smaller because
residue at ® = W, is proportional to

x @

- falls off fast as ® — 0 for smaller x.
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DGLAP in the DLL approximation

Range of validity
1> o> o)

(not a lot of room for ay(z) ~0.1)

In (Fg(x, Q2)> = In (Fg(x, Q%)) + \/% In ngggi;ﬁg) In (%)

Depends on initial fit value Q.
Bo has flavour thresholds up to Q = 2m;.
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Comparison with DLL for x = 1072

x=0.01 ——
DLL ——

xg(x)

.
1 10 100 1000
Q (Gev)

For x = 1072 the agreement with th DLL is very poor even at
Q=1TeV.
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Comparison with DLL for x =103

x=0.001 ——
DLL ——

xg(x)

. .
1 10 100 1000
Q (Gev)

For x = 1073 there is reasonable agreement with DLL limit for
Q > 500 GeV.
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SUMMARY

» We have a formalism for determining the (universal) Green
function for the BFKL equation with running coupling and IR
boundary condition given in terms of the phase of the oscillation
phase.
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SUMMARY

» We have a formalism for determining the (universal) Green
function for the BFKL equation with running coupling and IR
boundary condition given in terms of the phase of the oscillation
phase.

» A numerical example confirms an (unintegrated) gluon density
that rises with Q?, consistent with a DGLAP approach.
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SUMMARY

» We have a formalism for determining the (universal) Green
function for the BFKL equation with running coupling and IR
boundary condition given in terms of the phase of the oscillation
phase.

» A numerical example confirms an (unintegrated) gluon density
that rises with Q?, consistent with a DGLAP approach.

» The match with DGLAP in the DLL limit is probably only
numerically accurate for very large rapidities (low-x) and high
Q?. (possible even outside the reach of LHC.) - but a more
careful fit using the non-perturbative phase and photon impact
factor as free parameters still has to be investigated.

: :
THE GREEN FUNCTION FOR THE DISCRETE BFKL POMERON Diffraction2014, Primosten September 2014
e




