Charge exchange reaction at high energies Rainer Schicker Phys. Inst., Heidelberg sep 12, 2014 Physics motivation Charge exchange reaction by Reggeon exchange Charge exchange reaction by W⁺,W⁻ exchange Experimental considerations ## Diffractive event topologies at LHC energies - Reggeon-Pomeron exchanges contribute to these topologies - Regge exchanges at LHC ? \rightarrow Study charge exchange react. #### Hadron-hadron cross section Donnachie-Landshoff fits: $\sigma_{tot} = X \cdot s^{0.08} + Y \cdot s^{-0.45}$ ## Charge exchange reaction by Reggeon exchange charge exchange reaction in proton-proton collisions: $$ightharpoonup$$ p p $ightharpoonup$ n + Δ^{++} $ightharpoonup$ n + p π^+ $$ightharpoonup$$ p p $ightarrow \Delta^0 + \Delta^{++} ightarrow$ n π^0 + p π^+ $$\blacksquare$$ p p \rightarrow Δ^0 + Δ^{++} \rightarrow p π^- + p π^+ - need zero degree calorimeters + tagging of forward proton, pions - need good pseudorapidity coverage of detectors #### Two-by-two amplitude #### Two-by-three amplitude two-by-three ampl. can be calculated by dual amplitude single Regge limit double Regge limit # Data charge exchange reaction at low energies The charge exchange reaction pp ightarrow n + $\Delta^{++}(1232)$ measured at - Argonne Nat. Zero Gradient Synchrotron ($p_{Lab} = 6 \text{ GeV/c}$) - Intersecting Storage Ring (ISR) (\sqrt{s} = 23, 31, 45, 53 GeV) if Regge exchange due to pion: $\sigma \sim s^{-2}$, due to ρ , A_2 : $\sigma \sim s^{-1}$ # Prospects charge exchange at high energies ■ RHIC Brookhaven: $\sqrt{s} = 100\text{-}200 \text{ GeV}$ ■ LHC CERN: $\sqrt{s} = 13\text{-}14 \text{ TeV}$ Table: Cross section pp \to n Δ^{++} | | \sqrt{s} (GeV) | σ (nb) | |------|------------------|-----------------------------| | ISR | 31 | 580 ±90 | | | 45 | 210±40 | | | 53 | 170±40 | | RHIC | 100 | 48.5±5.5 | | | 200 | 12.2 ± 1.3 | | LHC | 7×10^3 | $(10.0\pm1.1)\times10^{-3}$ | | | 14×10^3 | $(2.4\pm0.3)\times10^{-3}$ | # Charge exchange reaction by W⁺,W⁻ exchange ■ pp $$\rightarrow$$ p + X + p, p* + X + p* \qquad X = W⁺W⁻, ZZ, $\gamma\gamma$, H - select these events by tagging Z_{tot}=0 system on one side, $Z_{tot}=2$ system on the other side - need to identify forward protons, charged pions and kaons (and neutrons) - Ongoing discussions with R. Pasechnik on cross section of these channels, QCD background sep 12, 2014 # QCD background single quark exchange • $q\overline{q} \rightarrow W^+W^-$, ZZ, $\gamma\gamma$, (plus additional parton exchange) - cross section as function of mass of $p^{*,2+}$, $p^{*,0}$? - phase space distribution of the proton fragments ? ## QCD background double quark exchange • double parton interaction $q\overline{q}q\overline{q} \to W^+W^-$, ZZ, $\gamma\gamma$ - \blacksquare cross section as function of mass of p*,2+, p*,0? - phase space distribution of the proton fragments? #### Location of detectors - Feasibility study @LHC interaction point - Measure straight sections of tracks ## Diffractive excitations of the proton diffractive excitation of the proton p p \rightarrow p N* \rightarrow p p $\pi^+\pi^-$ #### Where do the pions go? #### Instrumentation in both beam lines in N*-system at threshold: proton = $$(m_p,0,0,0)$$, pion = $(m_\pi,0,0,0)$ Lorentz boost: N*-system to lab-system: proton(lab) = $$(\gamma m_p, 0, 0, \gamma \beta m_p)$$, pion(lab) = $(\gamma m_\pi, 0, 0, \gamma \beta m_\pi)$ \rightarrow pion momentum reduced by factor $m_\pi/m_p \sim 0.15$, $\rightarrow \xi \sim 0.85$ #### Summary theoretical issues - What are the theoretical uncertainties in signal (W-fusion) at the hadron level? - What are the theoretical uncertainties in the background? (Reggeon-fusion, single parton, double parton exchange ?) - What are gap survival effects in charge exchange reactions? (both in W- and Reggeon exchange) - Both signal and background are expected to be suppressed at high energies. Which suppression is stronger, a naive 1/s-like suppression for Reggeon induced background, or a gap survival suppression for the WW-fusion signal? - What are the signal and the background differentially in the invariant mass of the proton fragments? What is the phase space distribution of these fragments? #### Summary experimental issues - selection of $Z_{tot}=0$ and $Z_{tot}=2$ systems with good acceptance requires large acceptance forward spectrometer - major investment in magnet configuration, detector systems, beam optics development - presently not foreseen at the LHC - a project for the FCC ? - evaluation of signal and background with event generators