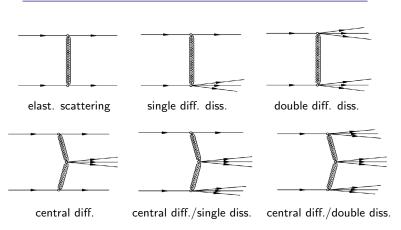
Charge exchange reaction at high energies

Rainer Schicker

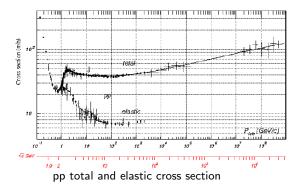
Phys. Inst., Heidelberg

sep 12, 2014


Physics motivation

Charge exchange reaction by Reggeon exchange

Charge exchange reaction by W⁺,W⁻ exchange


Experimental considerations

Diffractive event topologies at LHC energies

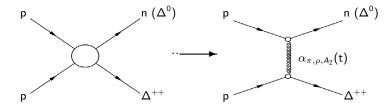
- Reggeon-Pomeron exchanges contribute to these topologies
- Regge exchanges at LHC ? \rightarrow Study charge exchange react.

Hadron-hadron cross section

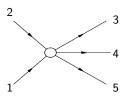
Donnachie-Landshoff fits: $\sigma_{tot} = X \cdot s^{0.08} + Y \cdot s^{-0.45}$

Charge exchange reaction by Reggeon exchange

charge exchange reaction in proton-proton collisions:

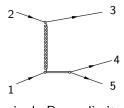

$$ightharpoonup$$
 p p $ightharpoonup$ n + Δ^{++} $ightharpoonup$ n + p π^+

$$ightharpoonup$$
 p p $ightarrow \Delta^0 + \Delta^{++}
ightarrow$ n π^0 + p π^+

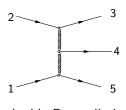

$$\blacksquare$$
 p p \rightarrow Δ^0 + Δ^{++} \rightarrow p π^- + p π^+

- need zero degree calorimeters + tagging of forward proton, pions
- need good pseudorapidity coverage of detectors

Two-by-two amplitude



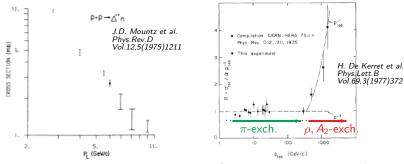
Two-by-three amplitude



two-by-three ampl.

can be calculated by dual amplitude

single Regge limit



double Regge limit

Data charge exchange reaction at low energies

The charge exchange reaction pp ightarrow n + $\Delta^{++}(1232)$ measured at

- Argonne Nat. Zero Gradient Synchrotron ($p_{Lab} = 6 \text{ GeV/c}$)
- Intersecting Storage Ring (ISR) (\sqrt{s} = 23, 31, 45, 53 GeV)

if Regge exchange due to pion: $\sigma \sim s^{-2}$, due to ρ , A_2 : $\sigma \sim s^{-1}$

Prospects charge exchange at high energies

■ RHIC Brookhaven: $\sqrt{s} = 100\text{-}200 \text{ GeV}$

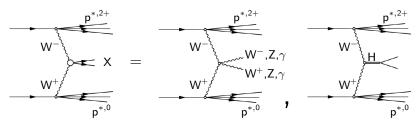
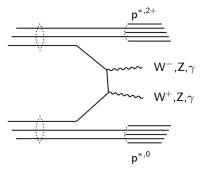

■ LHC CERN: $\sqrt{s} = 13\text{-}14 \text{ TeV}$

Table: Cross section pp \to n Δ^{++}

	\sqrt{s} (GeV)	σ (nb)
ISR	31	580 ±90
	45	210±40
	53	170±40
RHIC	100	48.5±5.5
	200	12.2 ± 1.3
LHC	7×10^3	$(10.0\pm1.1)\times10^{-3}$
	14×10^3	$(2.4\pm0.3)\times10^{-3}$

Charge exchange reaction by W⁺,W⁻ exchange

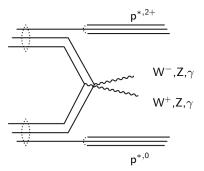
■ pp
$$\rightarrow$$
 p + X + p, p* + X + p* \qquad X = W⁺W⁻, ZZ, $\gamma\gamma$, H



- select these events by tagging Z_{tot}=0 system on one side, $Z_{tot}=2$ system on the other side
- need to identify forward protons, charged pions and kaons (and neutrons)
- Ongoing discussions with R. Pasechnik on cross section of these channels, QCD background

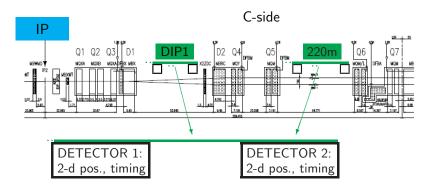
sep 12, 2014

QCD background single quark exchange


• $q\overline{q} \rightarrow W^+W^-$, ZZ, $\gamma\gamma$, (plus additional parton exchange)

- cross section as function of mass of $p^{*,2+}$, $p^{*,0}$?
- phase space distribution of the proton fragments ?

QCD background double quark exchange


• double parton interaction $q\overline{q}q\overline{q} \to W^+W^-$, ZZ, $\gamma\gamma$

- \blacksquare cross section as function of mass of p*,2+, p*,0?
- phase space distribution of the proton fragments?

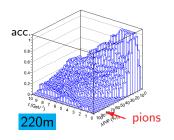
Location of detectors

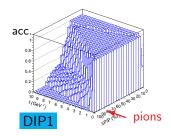
- Feasibility study @LHC interaction point
- Measure straight sections of tracks

Diffractive excitations of the proton

diffractive excitation of the proton p p \rightarrow p N* \rightarrow p p $\pi^+\pi^-$

Where do the pions go?


Instrumentation in both beam lines


in N*-system at threshold:

proton =
$$(m_p,0,0,0)$$
, pion = $(m_\pi,0,0,0)$

Lorentz boost: N*-system to lab-system:

proton(lab) =
$$(\gamma m_p, 0, 0, \gamma \beta m_p)$$
, pion(lab) = $(\gamma m_\pi, 0, 0, \gamma \beta m_\pi)$
 \rightarrow pion momentum reduced by factor $m_\pi/m_p \sim 0.15$, $\rightarrow \xi \sim 0.85$

Summary theoretical issues

- What are the theoretical uncertainties in signal (W-fusion) at the hadron level?
- What are the theoretical uncertainties in the background? (Reggeon-fusion, single parton, double parton exchange ?)
- What are gap survival effects in charge exchange reactions? (both in W- and Reggeon exchange)
- Both signal and background are expected to be suppressed at high energies. Which suppression is stronger, a naive 1/s-like suppression for Reggeon induced background, or a gap survival suppression for the WW-fusion signal?
- What are the signal and the background differentially in the invariant mass of the proton fragments? What is the phase space distribution of these fragments?

Summary experimental issues

- selection of $Z_{tot}=0$ and $Z_{tot}=2$ systems with good acceptance requires large acceptance forward spectrometer
- major investment in magnet configuration, detector systems, beam optics development
- presently not foreseen at the LHC
- a project for the FCC ?
- evaluation of signal and background with event generators