Spin physics results from STAR

Nikola Poljak
University of Zagreb
For the STAR Collaboration

13.09.2014.

Diffraction 2014

Contributions to the proton's spin

Consider a proton moving to the right

Longitudinal Polarization

Transverse Polarization

Polarized DIS: ~0.3 Puzzling for ~25 years Relatively poorly constrained but S_o coming into focus!

Proton spin sum rule:
$$\frac{1}{2}\hbar = \frac{1}{2}\sum_{q} S_q^z + S_g^z + \sum_{q} L_q^z + L_g^z$$

$$\frac{1}{2}\hbar = \frac{1}{2}\sum_{q} S_{q}^{z} + S_{g}^{z} + \sum_{q} L_{q}^{z} + L_{g}^{z}$$

- Probing gluon polarization with jets and π^0 's
 - Probing sea quark polarization with W's
 - Probing transverse structure with hadrons
 - And with W's, Z's, and other probes
 - Looking to the future

Relativistic Heavy Ion Collider

NIM A499, 245 (2003)

- Spin rotators provide choice of spin orientation independently of experiment
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Spin pattern varies fill-to-fill
- Variable proton beam energy

Solenoidal Tracker at RHIC (STAR)

Inclusive hadron measurements: Barrel ElectroMagnetic Calorimeter (BEMC) + Endcap ElectroMagnetic Calorimeter (EEMC) and Forward Meson Spectrometer (FMS) FPD (east) not shown (neutral) / TPC (charged)

Jet and W/Z measurements: TPC +Barrel + Endcap EMC

$$\frac{1}{2}\hbar = \frac{1}{2}\sum_{q} S_{q}^{z} + S_{g}^{z} + \sum_{q} L_{q}^{z} + L_{g}^{z}$$

- Probing Gluon Polarization with Jets and π^0 's
 - Probing Sea Quark Polarization with W's
 - Probing Transverse Structure with hadrons
 - And with W's, Z's, and other probes
 - Looking to the Future

Probing polarized gluon PDF's with jets

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto \frac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL}$$

 A_{LL} for, e.g. jets, sensitive to polarized PDF's (Δf) and partonic asymmetry, \hat{a}_{LL}

Asymmetries at different values of p_T or \sqrt{s} \rightarrow sample different mix of partonic subprocesses

Jet reconstruction

MC Jets **Jet Levels** Jet direction Detector GEANT **Particle PYTHIA** Parton q, g

STAR has:

- Full azimuthal coverage
- Charged particle tracking from TPC for $|\eta| < 1.3$
- E/BEMC provide electromagnetic energy reconstruction in the range of $-1 < \eta < 2.0$

Anti-K_T **Jet Algorithm:**

- Radius = 0.6
- Used in both data and simulation

- 2009 results (showing A_{LL} as a function of parton-jet p_T) have 3 to 4 times better statistical precision than 2006 results
 - Two pseudorapidity ranges emphasize different partonic kinematics
- Results lie consistently above the 2008 DSSV fit! (the first global analysis to include RHIC data Phys.Rev. D80 (2009) 034030)

DSSV -> DSSV* -> New DSSV Fit Results

- Integral of $\Delta g(x)$ in range 0.05 < x < 1.0 increases substantially, now significantly above zero.
 - Uncertainty on integral over low *x* region is still sizable

DSSV -> DSSV* -> New DSSV Fit Results

- Integral of $\Delta g(x)$ in range 0.05 < x < 1.0 increases substantially, now significantly above zero.
 - Uncertainty on integral over low *x* region is still sizable
 - Uncertainty shrinks substantially from DSSV* to new DSSV fit

First firm evidence of non-zero gluon polarization!

Probing low *x* gluons with π^0 A_{LL}

STAR has measured π^0 A_{LL} in three different pseudorapidity ranges to assess different kinematics, different fragmentation, different systematics etc. PRD 80, 111108(R), PRD 89, 012001 (2014), Wissink SPIN2008

No large asymmetries seen

Probing low *x* gluons with π^0 A_{LL}

STAR has measured π^0 A_{LL} in three different pseudorapidity ranges to assess different kinematics, different fragmentation, different systematics etc. PRD 80, 111108(R), PRD 89, 012001 (2014), Wissink SPIN2008

No large asymmetries seen

- Work underway with 2012 dataset (10x lumi.) at intermediate pseudorapidity, projected large improvement in stat. uncertainty
- Higher CoM energy
 - $200 \rightarrow 510 \text{ GeV}$
 - Pushes to lower *x* gluon
- Additional data at 510GeV from the FMS (2012 and 2013 forward)

$$\frac{1}{2}\hbar = \frac{1}{2}\sum_{q} S_{q}^{z} + S_{g}^{z} + \sum_{q} L_{q}^{z} + L_{g}^{z}$$

- Probing Gluon Polarization with Jets and π^0 's
 - Probing Sea Quark Polarization with W's
 - Probing Transverse Structure with hadrons
 - And with W's, Z's, and other probes
 - Looking to the Future

Probing Sea Quark Polarizations With W's

$$u + \bar{d} \to W^+ \to e^+ + \nu$$

 $d + \bar{u} \to W^- \to e^- + \bar{\nu}$

$$d + \bar{u} \rightarrow W^- \rightarrow e^- + \bar{\nu}$$

- Direct coupling of W's to the quarks and antiquarks of interest
 - Longitudinally, excellent probes of sea quark polarizations, but also an important probe of transverse physics

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \longrightarrow A_{L} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$

Measure single-spin asymmetry: helicity flip in one beam while averaging over the other

- Probing Gluon Polarization with Jets and π^0 's
 - Probing Sea Quark Polarization with W's
 - Probing Transverse Structure with hadrons
 - And with W's, Z's, and other probes
 - Looking to the Future

Transverse spin asymmetry A_N

$$A_N = \frac{1}{P} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

A_N: a difference in cross-section between particles produced to the left and right

Theory Expectation:

Small asymmetries at high energies (Kane, Pumplin, Repko, PRL 41, 1689–1692 (1978))

$$A_N \propto \frac{m_q}{p_T}$$

Experiment:

(E704, Fermi National Laboratory Phys. Lett. B 261 (201) Phys. Lett. B 264 (462))

Anomalously large A_N observed for nearly 40 years!

$$x_F = \frac{p_{z,\pi}}{p_{z,\text{max}}} = \frac{p_{z,\pi}}{\sqrt{s/2}}$$

Mechanisms for transverse single-spin asymmetries

Sivers mechanism: asymmetry in the forward jet or γ *production*

D. Sivers, PRD 41, 83 (1990); 43, 261 (1991)

Sensitive to **proton spin**– parton **transverse motion** correlations (needs L_z)

Collins mechanism: asymmetry in the forward jet *fragmentation*

J. Collins, NP B396, 161 (1993)

Twist-3: Asymmetry from multi-parton correlation functions (PRL 67, 2264) or equivalent mechanism for fragmentation functions (PRD 89, 111501 R)

Correlators closely related to k_T moments of TMDs (NPB 667, 201)

Mechanisms for transverse single-spin asymmetries

Sivers mechanism: asymmetry in the forward jet or γ *production*

D. Sivers, PRD 41, 83 (1990); 43, 261 (1991)

Collins mechanism: asymmetry in the forward jet *fragmentation*

J. Collins, NP B396, 161 (1993)

Separate Sivers and Collins:

Go beyond inclusive production – e.g. jets, W/Z, direct photons

Sivers $\sim \sin(\phi_S)$

Collins $\sim \sin(\phi_S - \phi_h)$

 ϕ_S —angle between spin and event plane

 ϕ_h —angle of hadron around jet axis

A_N results from STAR

- Features of A_N
 - Large A_N persists at STAR
 - Observed at various \sqrt{s} and η
 - x_F dependence as expected
 - large asymmetries persist at high p_T
 - larger in η 's than π^0 's?

$A_N(W^{+/-}, Z^0)$ results

- A_N in Drell-Yan, W/Z production provide excellent complement to SIDIS
 - Attractive from a theoretical perspective (no fragmentation function needed as for π^0 's, etc., W couples directly to proton sea quarks)
 - Sivers function changes sign when comparing with transverse asymmetries from SIDIS (Collins, J. C., 2002, Phys. Lett. B 536, 43)
 - Test the universality and factorization of TMD's, constrain their evolution important tests of QCD
 - Analysis completely reconstructs the bozons

Projections for 2016 show $A_N(W^{+/-},Z^0)$ will constrain sea quark Sivers distribution *and* make a statement on the Sivers sign change

- Probing Gluon Polarization with Jets and π^0 's
 - Probing Sea Quark Polarization with W's
 - Probing Transverse Structure with hadrons
 - And with W's, Z's, and other probes
 - Looking to the Future

Forward Calorimetry Upgrade: 2015 and 2020

FMS (forward EM calorimetry) Preshower Upgrade in 2015

- Allows separation among photons, π^0 's, charged hadrons, and electrons
- Supports direct photon and DY measurements (no frag. functions, universality tests)

STAR FMS-PreShower:

2020 forward upgrade:

ECal: Tungsten powder scintillating fiber, $23X_0$, 2.3cm Mol.

HCal: Lead+scintillator tiles, 10x10x81 cm³, 4X₀

- Dijet measurements direct access to parton x
- Means to measure low x gluon distribution an attractive probe to $x \approx 10^{-3}$ before the EIC era (arxiv 1212.1701)

Conclusions and outlook

After 25 years, evidence of non-zero gluon polarization in the proton

Pushing to **lower** *x* **gluons**

W's and Z's improving our understanding of sea quark polarizations

Exploration of large transverse asymmetries continues

Efforts to disentangle initial-state (e.g. Sivers) and final-state (e.g. Collins) effects; and confirming both in a pp environment

Large datasets on hand, analyses underway

Detector upgrades continue

Stay tuned and

Thank you!