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Why mean p, is interesting

* <p:>(N_)— correlations are sensitive to the fine details of dynamics
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Why mean p; is interesting

* <p>(N,)— correlations are sensitive to the fine details of dynamics
 complete change of behavior from small to large energies
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<p:>(N ) — correlations are sensitive to the fine details of dynamics
complete change of behavior from small to large energies

possible sign of phase transition

difficult to describe by untuned MonteCarlos
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Why mean p, is interesting

<p:>(N ) — correlations are sensitive to the fine details of dynamics
complete change of behavior from small to large energies

possible sign of phase transition

difficult to describe by untuned MonteCarlos

saturation included in EPOS does a good job




Basics of geometrical scaling

for y ~ 0 (central rapidity) i.e. for x; ~ x, = x and for symmetric systems
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Basics of geometrical scaling

for y ~ 0 (central rapidity) i.e. for x; ~ x, = x and for symmetric systems

saturation scale = gluon density
per transverse area
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Basics of geometrical scaling

for y ~ 0 (central rapidity) i.e. for x; ~ x, = x and for symmetric systems

parton — hadron duality:
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per transverse area
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Power-like growth of multiplicity
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Power-like growth of multiplicity %
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Why mean p, is interesting

<p:>(N ) — correlations are sensitive to the fine details of dynamics
complete change of behavior from small to large energies

possible sign of phase transition

difficult to describe by untuned MonteCarlos

saturation included in EPOS does a good job

geometrical scaling predicts energy dependence of <p;>



Mean p;as a function of N,

(pT) ~ Qs(W)



Mean p;as a function of N,
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Mean p;as a function of N,
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interaction radius

phenomenological formula:

nonperturbaitive
coefficient

a, B do not depend on energy, do depend on particle species
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<p:>(N ) — correlations are sensitive to the fine details of dynamics
complete change of behavior from small to large energies

possible sign of phase transition

difficult to describe by untuned MonteCarlos

saturation included in EPOS does a good job

geometrical scaling predicts energy dependence of <p;>

sensitivity to the interaction radius dependence on N,



Interaction radius

A. Bzdak, B. Schenke, P. Tribedy and R. Venugopalan,
Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions,

Phys. Rev. C 87 (2013) 064906, [arXiv:1304.3403 [nucl-th]].
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Scaling of mean p-
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geometrical scaling predicts energy dependence of <p;>

sensitivity to the interaction radius dependence on N,

radii calculated from CGC describe well <p;> in different systems



Interaction radius

Transverse size and expansion time (longitudinal size) are proportional for fixed multiplicity
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Energy dependence of mean p-
- apparent paradox?

transverse area is
energy indpendent
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Mean p; scaling

ALICE Collaboration, Phys. Lett. B727 (2013) 371 [arXiv:1307.1094 [nucl-ex]]
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<p:>(N,,) — correlations are sensitive to the fine details of dynamics
complete change of behavior from small to large energies

possible sign of phase transition

difficult to describe by untuned MonteCarlos

saturation included in EPOS does a good job

geometrical scaling predicts energy dependence of <p;>

sensitivity to the interaction radius dependence on N,

radii calculated from CGC describe well <p;> in different systems
longitudinal vs. transverse sizes — one scale problem

induced energy dependence of S; for fixed N,

scaling of <p;>(N,) induced by energy dependence of Q_,,
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<p:>(N,,) — correlations are sensitive to the fine details of dynamics
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geometrical scaling predicts energy dependence of <p;>
sensitivity to the interaction radius dependence on N,

radii calculated from CGC describe well <p;> in different systems
longitudinal vs. transverse sizes — one scale problem

induced energy dependence of S; for fixed N,

scaling of <p;>(N_,) induced by energy dependence of Q__,
interaction radii cannot be too large, new saturation seen in data?
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* <p>(N,)— correlations are sensitive to the fine details of dynamics
 complete change of behavior from small to large energies

e possible sign of phase transition

e difficult to describe by untuned MonteCarlos

e saturation included in EPOS does a good job

* geometrical scaling predicts energy dependence of <p;>

* sensitivity to the interaction radius dependence on N,

* radii calculated from CGC describe well <p;>in different systems

* longitudinal vs. transverse sizes — one scale problem

* induced energy dependence of S; for fixed N,

* scaling of <p;>(N_,) induced by energy dependence of Q__,

* interaction radii cannot be too large, new saturation seen in data?
* <p:>(N_) is sensitive to the space-time characteristics of the
interaction volume, at large multiplicities universal behavior expected
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