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* |ntroduction

| will use two basic and general concepts to distinguish spin
and parity statesof JP =0* ,0 , 2*,2 ingg =2 yy.

A set of observables with one or both photon polarization
specified will also be identified.



Usual Approach for the determination of the Spin and the parity :
In the decay of a resonance X

X>>ZIWW-yy and X >tt

Look for the dependence of cross section on the angle g*
Angle between momentum of one of the initial partons and
the decaying particle.

Expectation is that cross-section behaves differently with @*

For different value of the spin of X

Vector bosons decay into 4 leptons. Their angular distribution
give information on the spin and the parity of the resonance

* Investigate the invariant mass distribution of Higgs in a final

state HV



These involve certain dynamical assumptions, e.g on the coupling

of Higgs to other particles, and thus, making them somewhat Model
dependent

e A modelindependent approach: Spin Observables
We restrict ourselves to V' Y final state

At High energies only the amplitude description of a reaction is
practically feasible. Thus, one needs to choose a particular amplitude
formalism. For a given reaction, and for a given set of symmetries
holding for that reaction, the number of independent amplitudes
describing that reaction is the same in any formalism.

Number of Amplitudes depend on the spin of the participating
particles and the symmetries applied.
In the case of JgJ —

All particles are massless spinl1 . each particle has only 2
spin states



Polarization Test of Higgs Resonance and Its Spin
and Parity In 99 —
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J- constraint: some direction

All amplitudes with |a—b|>J or [c-d|>J must vanish

IF two AmplitudesD(cl,dl;al,bl) and D(C2 d,;a, ,bz) are J-forbidden,
then all eight observables formed from bilinear products of them and
permuted amplitudes will vanish. The same is true if the two amplitudes
are J-allowed but if a,+b,+a,+b, =23+



Factorization constraint: A second constraint arises from the
J-constraint on the two vertices.The interaction depicted in the
Figure can be visualized as the product of two non-overlapping
Independent parts; each containing a set of physical particles
plus the resonance. Each part is a three particle vertex and at
each vertex the number of vertex amplitudes is restricted by the
J-constraint. A simple three- particle vertex can at most have

Njs s, :(231 +1)(232 +1)(2'J +1) Amplitudes

Then, the number of three-point amplitudes in the overall factorizable
four-particle process with an arbitrary J- resonance is at most

N =[(2s,+1)(2s,+1)+(2s,+1)(2s, +1)](2J +1)
But The OVERALL reaction has only

N =(2s,+1)(2s,+1)(2s,+1)(2s,+1) Amplitudes



Since one must have N’ < N, Depending on the value of J, this inequality may or
may not reduce the number of amplitudes.
In fact, for J > 0 the inequality does not hold and no reduction occus.

The number of three-particle vertex amplitudes enumerated above
does not take into account the J -constraint. In a real process in which

J—>s, +s,thenS,, +S,, mustnot exceed J

Imposition of these considerations reduces the number of vertex

amplitudes to
Njgs, =(2s,+1)(2s, +1) J>s +5,
Nyos, =(23+1)(s,+5, =)+ (I +5, =5, +1)(J —s, +5, +1) s, +S,>J>s, -5,

Ny, . =(2s,+1)(2J +1) S, —S, >

Js; s,



So, the number of independent amplitudes N | from the
J-constraint and the Factorization constraint combined reduces to

P
NJ o NJ3132 T NJ S35,

For the s-channel resonance, these constraints are most simply
expressed for the center of mass helicity amplitudes

: . J
D(c,d;ab)=> D,(c,d;ab)d’y,,(8)
J
For a resonance of spin J the spin dependence factorizes as follows
. rJ J
D(c,d;a,d)oclyy Ty

[’s are proportional to vertex functions having the requisite
number of N,,., Independent component of Eq.



. rJ J
D(c,d;a,d)ocly Ty
Gives non-linear relations:
D, (c,d;a,b)D,(c’,d";a’,b")=D,(c',d;a’,b)D,(c,d";a,b")

among the helicity amplitudes that lead to complicated relations
among the observables

However, when parity is conserved, the above equation simplifies
Then for s_,s, and for the intrinsic parities 7,7, the vertex satisfies

O, =mma(-1) T,

So, we get

D, (c,d;a,b)=+D,(-c,—d;a,b)



For the reaction With the pertinent symmetries

Only 5 helecity amplitudes

A =D(+,+;+,+) . A =D(+,+;+-) A, =D(+,—;+-)
A, =D(+,+;—-) , A =D(+,—;—-+)

Applying the constraints to amplitudes, leads to the following relations
between the pairwise amplitudes for a resonance withm, =t 1

D(c,d;a,b)=>D,(c,d;ab)d’,,,(9)
J > A=A, A=A

[, o=, (-1) T, J —

A, and A, both go with d;, (&)




A, and A, both go with d;, (6) so we get:

A =

I+

A4

With no restriction on A, , A, ,and A,

Due to J- constraint, for a spin zero resonance, X, we also have

A=A =A =0
—> For X, resonance,

there is only one independent helicity amplitude and as such,
all obervables with one or both particle's polarization specified
vanish uniquely. Thus, we are left with only unpolarized cross-
section propotional to 2 _ :

Pro? Al =[A



Our amplitude test in general does not prohibit the formation of a
resonance state with spin 1. However, the decay of such state into
two photons are forbidden by Landau-Yang theorem

It is also true that a spin 1 color singlet state cannot be produced
in gluon fusion. Therefore, we will not consider this case.

Going to /=2 resonance, All 5 amplitudes contribute to in
this case, however, there are a number of observables with one
or both photons polarizations are specified, which need not be
Zero.
Applying the condition A, =+A, to those observables, gives the
relationships between observables and Amplitudes as in the

for even and odd parity )(2 resonance



Observable J=0" J=27 J=2"

o 4|4, 2|4, + 8|4, +4|4,[ 4|4 +8|4,] + 4|4
(A,A4;4,-1) 0 4Im( 4,4, ) —4!}?1(14314;]
(4,A;R,R) 0 —2 Re(4,4,") 2Re(A4,4;")

(4. 4;R.R) 0 2|4l 4| A4 ) +| 4]
(4.4,1,-1) 0 4{|Aj‘2+3‘ﬁz‘j_|‘43|j} _4{‘A1‘2_3|A2‘j_“{3‘3}
(4,4,AR) 0 —4Re(4,4; ) 4Re(A,4;")

R . Right circular Polarization

L Left circular Polarization
. _ ¢=0°,180" ~ —R
R: Linearly polarized state
¢ =90",270" ~ R
¢ = 45°,225° etc.~ | j

I:  Linearly polarized state
¢ =135",315° etc. ~— |

Unpolarized state: A=(++)+(——)
Circular Asymmetry of Photon: A =(++)—(——)



Evidently, deviation of any of these observables, excluding ¢ ,from
a null value is an indication that the spin of the observed resonance
in gg > vy is different from zero and their sign (for most of them)
determines the parity of the resonance state.



John Ellis and Hwang have used a massive Kaluza-Klein graviton
type coupling

for X,gg and X,yy vertices and the relevant amplitudes
are calculated. They find
A «(1+cosd)”, A, oc(l-cosd)

except at 0=90 degree, this is incompatible with our general
test, namely, for a J=2* resonance one expects A, =A,!



Conclusions:

= | presented a spin amplitude test for distinguishing the spin and
the parity of the resonance state observed at LHC.

= A set of observables with only final state photons polarization
specified, are identified that completely described the reaction in
guestion.

= since the conclusions dynamics independent, any dynamical
theory ought to observe those general results. Specially one needs
to be careful in constructing a model in which the observed
resonance is not considered to be the standard model Higgs.



EXTRA SLIDES ON THE OPTIMAL FORMALISM



The Usual Approach: Decay of resonances like
X = ZZ W W~ and X — {1

* Look for the dependence of cross section on the angle
between momentum of one of the initial partons and the
momentum of one of the decaying particles.

Depending on the spin of X we expect the cross section to
behave differently.

Given that vector bosons decay into four leptons, the
angular distribution of the final state leptons provide
information on the spin and the parity of the resonance
state, X

e Look into invariant mass distribution of a Higgs with
an associated vector boson in the final state.



If only the Lorentz invariance is assumed, there will be 16
iIndependent amplitudes.

Both Lorentz invariance and the parity conservation are
Imposed, the number reduces to 8.

Imposition of time reversal and the identical particle

constraint on the initial and final states brings down the number
of independent amplitudes to 5.

The spin observables depend linearly on bilinear products of the
complex amplitudes, the relationship is given by a large matrix. To
achieve economy and simplicity, this matrix should be as close to a
diagonal one as possible.

Hermicity requirement prohibits complete diagonalization of this
matrix. The class of formalisms in which the matrix is as close to
diagonal as possible is called "optimal” [Moravcsik and Goldstein,
Ann. Phys. N. Y. 98(1976)128].



The observable-amplitude structure for Lorenz invariance only

Denote an Amplitude by D(c,d; a,b)
Cand d spin projection of final state particles along the quantization
axes. a and b are that of the initial state particles

In a general reaction A+B = C+D, the observables are denoted by,
L(uH, UVH,;oH  EQH, )

where u and v are the spin indices for particle A, the indices U and V
refer to the spin of particle B, the indices & ,® to particle C and finally,
the indices = and Q refer to particle D and where H can be either real
(R) or imaginary (l), provided that the subscripts of His +1 or -1,
respectively. For the process under consideration, in the argument of
L we can have only four possibilities of ++, --, Re(+-) and Im(+-).



A LargeMatrix

L

n

Hermicity requirement prohibits complete diagonalization of this matrix
The class of formalisms in which the matrix is as close to diagonal as
possible is called "optimal “.

In it, this matrix consists of a string of small matrices along the main
diagonal and zeroes everywhere else. The size of the small matrices, for
any four particle reaction, are 1-by-1, 2-by-2, 4-by-4 or 8-by-8.



. Observables-Amplitude structure under Lorentz
Invariance and Discrete symmetries

Under the parity conservation 16 independent amplitudes reduce to
8. Since we are considering helicity, we know that the reduction from
16 to 8 will not occur by the vanishing of the 8 amplitudes, but will
occur by pairwise equalities given by

D(C, d ‘3 ,b) _ (_1)a+b+c+d (_1)SA—SB+SC—SD D(—C,—d -3 ,—b)

Imposition of time reversal invariance requires that the helicity
amplitudes to satisfy
a+b+c+d Sp+Sg+Sc+Sp
D(c.d;a,b)=(-1) 13 D(a,b;c .d)
Finally, when particles A=B and C=D, identical particle restriction
also applies and provide additional relation among the helicity

amplitudes according to

D(C ,d : a,b) _ (_1)a+b+c+d (_1)28A+ZSC D(d C ,b ,a)



These restrictions on the amplitudes impose certain restrictions on
the observables

\dentical particle restriction translates into

L(uvH, UVH,;éoH, EQH, ) = (-1)"7 " £(UVH, uWH ,; EQH, éoH,)

|dentical Particle+Time reversal

L(uvH, UVH,;&0H, EQH,)
_ (_1)§+U+E+U +o+V+Q+V +(1/2)( p—q+P-Q) L (fa)Hq ,EQHQ ; uvH b , UVH P )



The polarization states of gluon or photon are simply denoted by

R: ++ state Right circular Polarization
L. —— state Rightcircular Polarization

R:  Re(+-) Linearly polarized state

I:  Im(+-) Linearly polarized state

For a photon or gluon polarized in the direction of
=90, 270, etc. degrees, we obtain  +Re(+—)
=0, 180, etc. Degrees, we get —Re( )
=45, 225, etc. degrees, we have +Im(+-)
=135, 315, etc. degrees, we obtain —Zm(+ )

Unpolarized state: A= (++)+(——)
Circular Asymmetry of Photon: A =(++)—(——)
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