How large is the gluon polarization in the statistical parton distributions approach?

Jacques Soffer

Department of Physics, Temple University, Philadelphia, PA 19122-6082, USA

Outline

- Basic procedure to construct the statistical polarized parton distributions
- Essential features from unpolarized and polarized Deep Inelastic Scattering data
- New results using a much broader DIS data set
- Structure of the proton spin with the new gluon helicity distribution
- Conclusions

Collaboration with Claude Bourrely and Franco Buccella

- A Statistical Approach for Polarized Parton Distributions, E.P.J. C23, 487 (2002)
- Recent Tests for the Statistical Parton Distributions Mod. Phys. Letters A18, 771 (2003)
- The Statistical Parton Distributions: status and prospects Euro. Phys. J. C41,327 (2005)
- The extension to the transverse momentum of the statistical parton distributions Mod. Phys. Letters A21, 143 (2006)
- Strangeness asymmetry of the nucleon in the statistical parton model Phys. Lett. B648, 39 (2007)
- How is transversity related to helicity for quarks and antiquarks in a proton? Mod. Phys. Letters A24, 1889 (2009)
- Semiinclusive DIS cross sections and spin asymmetries in the quantum statistical parton distributions approach, Phys. Rev. D83, 074008 (2011)
- The transverse momentum dependent statistical parton distributions revisited Int. Journal of Mod. Phys. A28, 1350026 (2013)
- W^{\pm} bosons production in the quantum statistical parton distributions approach (Phys. Lett. B726, 296 (2013))

 How large is the gluon polarization in the statistical parton distributions approach? p. 3/20

Our motivation and goals

- Will propose a quantum statistical approach of the nucleon viewed as a gas of massless partons in equilibrium at a given temperature in a finite size volume.
- Will incorporate some well known phenomenological facts and some QCD features

Our motivation and goals

- Will propose a quantum statistical approach of the nucleon viewed as a gas of massless partons in equilibrium at a given temperature in a finite size volume.
- Will incorporate some well known phenomenological facts and some QCD features
- Will parametrize our PDF in terms of a rather small number of physical parameters, at variance with standard polynomial type parametrizations
- Will be able to construct simultaneously unpolarized and polarized PDF: A UNIQUE CASE ON THE MARKET!
- Will be able to describe physical observables both in DIS and hadronic collisions
- Will make some very specific challenging predictions, from the behavior of unpolarized and polarized PDF, either in the sea quark region or in the valence region
- Will present new results on the gluon helicity distribution

Basic procedure

Use a simple description of the PDF, at input scale Q_0^2 , proportional to $[\exp[(x-X_{0p})/\bar{x}]\pm 1]^{-1}$, plus sign for quarks and antiquarks, corresponds to a Fermi-Dirac distribution and minus sign for gluons, corresponds to a Bose-Einstein distribution. X_{0p} is a constant which plays the role of the thermodynamical potential of the parton p and \bar{x} is the universal temperature, which is the same for all partons.

NOTE: x is indeed the natural variable, since all the sum rules we will use are expressed in terms of x

Basic procedure

Use a simple description of the PDF, at input scale Q_0^2 , proportional to $[\exp[(x-X_{0p})/\bar{x}]\pm 1]^{-1}$, plus sign for quarks and antiquarks, corresponds to a Fermi-Dirac distribution and minus sign for gluons, corresponds to a Bose-Einstein distribution. X_{0p} is a constant which plays the role of the thermodynamical potential of the parton p and \bar{x} is the universal temperature, which is the same for all partons.

NOTE: x is indeed the natural variable, since all the sum rules we will use are expressed in terms of x

From the chiral structure of QCD, we have two important properties, allowing to RELATE quark and antiquark distributions and to RESTRICT the gluon distribution:

- Potential of a quark q^h of helicity h is opposite to the potential of the corresponding antiquark \bar{q}^{-h} of helicity h, $X_{0q}^h = -X_{0q}^{-h}$.
- Potential of the gluon G is zero, $X_{0G} = 0$.

The polarized PDF $q^{\pm}(x,Q_0^2)$ at initial scale Q_0^2

For light quarks q = u, d of helicity $h = \pm$, we take

$$xq^{(h)}(x,Q_0^2) = \frac{AX_{0q}^h x^b}{\exp[(x - X_{0q}^h)/\bar{x}] + 1} + \frac{\tilde{A}x^{\tilde{b}}}{\exp(x/\bar{x}) + 1} ,$$

consequently for antiquarks of helicity $h = \mp$

$$x\bar{q}^{(-h)}(x,Q_0^2) = \frac{\bar{A}(X_{0q}^h)^{-1}x^{\bar{b}}}{\exp[(x+X_{0q}^h)/\bar{x}]+1} + \frac{\tilde{A}x^{\tilde{b}}}{\exp(x/\bar{x})+1}.$$

Note: $q = q^+ + q^-$ and $\Delta q = q^+ - q^-$ (idem for \bar{q}).

Extra term is absent in Δq and q_v also in u-d or $\bar{u}-\bar{d}$.

The additional factors X_{0q}^h and $(X_{0q}^h)^{-1}$ are coming from TMD

The polarized PDF $q^{\pm}(x,Q_0^2)$ at initial scale Q_0^2

For light quarks q = u, d of helicity $h = \pm$, we take

$$xq^{(h)}(x,Q_0^2) = \frac{AX_{0q}^h x^b}{\exp[(x-X_{0q}^h)/\bar{x}]+1} + \frac{\tilde{A}x^{\tilde{b}}}{\exp(x/\bar{x})+1} ,$$

consequently for antiquarks of helicity $h = \mp$

$$x\bar{q}^{(-h)}(x,Q_0^2) = \frac{\bar{A}(X_{0q}^h)^{-1}x^{\bar{b}}}{\exp[(x+X_{0q}^h)/\bar{x}]+1} + \frac{\tilde{A}x^{\tilde{b}}}{\exp(x/\bar{x})+1}.$$

Note: $q = q^+ + q^-$ and $\Delta q = q^+ - q^-$ (idem for \bar{q}).

Extra term is absent in Δq and q_v also in u-d or $\bar{u}-\bar{d}$.

The additional factors X_{0q}^h and $(X_{0q}^h)^{-1}$ are coming from TMD

For strange quarks and antiquarks, s and \bar{s} , use the same procedure which leads to $xs(x,Q_0^2) \neq x\bar{s}(x,Q_0^2)$ and $x\Delta s(x,Q_0^2) \neq x\Delta \bar{s}(x,Q_0^2)$, but involve the same number of free parameters as for light quarks

For gluons we use a Bose-Einstein expression given by $xG(x,Q_0^2)=\frac{A_Gx^bG}{\exp(x/\bar{x})-1}$, with a vanishing potential and the same temperature \bar{x} . For the polarized gluon distribution $x\Delta G(x,Q_0^2)$ we take a similar expression at initial scale (positive for all x)

Essential features from the DIS data

From well established features of u and d extracted from DIS data, we anticipate some simple relations between the potentials:

- $\blacksquare u(x)$ dominates over d(x), so we should have $X_{0u}^+ + X_{0u}^- > X_{0d}^+ + X_{0d}^-$
- $ightharpoonup \Delta u(x) > 0$, therefore $X_{0u}^+ > X_{0u}^-$
- lacksquare $\Delta d(x) < 0$, therefore $X_{0d}^- > X_{0d}^+$.

Essential features from the DIS data

From well established features of u and d extracted from DIS data, we anticipate some simple relations between the potentials:

- $\blacksquare u(x)$ dominates over d(x), so we should have $X_{0u}^+ + X_{0u}^- > X_{0d}^+ + X_{0d}^-$
- $\Delta u(x) > 0$, therefore $X_{0u}^+ > X_{0u}^-$
- $\triangle d(x) < 0$, therefore $X_{0d}^- > X_{0d}^+$.

So we expect X_{0u}^+ to be the largest potential and X_{0d}^+ the smallest one. In fact, from our fit we have obtained the following ordering

$$X_{0u}^+ > X_{0d}^- \sim X_{0u}^- > X_{0d}^+$$
.

This ordering has important consequences for \bar{u} and \bar{d} , namely

Essential features from DIS data

- $\bar{d}(x) > \bar{u}(x)$, flavor symmetry breaking expected from Pauli exclusion principle. This was already confirmed by the violation of the Gottfried sum rule (NMC).
- $\Delta \bar{u}(x) > 0$ and $\Delta \bar{d}(x) < 0$, a PREDICTION from 2002, in agreement with polarized DIS (see below) and has been more precisely checked at RHIC-BNL from W^{\pm} production, already in active running phase (see PLB726, 296,(2013)).

Essential features from DIS data

- $\bar{d}(x) > \bar{u}(x)$, flavor symmetry breaking expected from Pauli exclusion principle. This was already confirmed by the violation of the Gottfried sum rule (NMC).
- $\Delta \bar{u}(x) > 0$ and $\Delta \bar{d}(x) < 0$, a PREDICTION from 2002, in agreement with polarized DIS (see below) and has been more precisely checked at RHIC-BNL from W^{\pm} production, already in active running phase (see PLB726, 296,(2013)).
- Note that since $u^-(x) \sim d^-(x)$, it follows that $\bar{u}^+(x) \sim \bar{d}^+(x)$, so we have

$$\Delta \bar{u}(x) - \Delta \bar{d}(x) \sim \bar{d}(x) - \bar{u}(x)$$
,

i.e. the flavor symmetry breaking is almost the same for unpolarized and polarized distributions ($\Delta \bar{u}$ and $\Delta \bar{d}$ contribute to about 10% to the Bjorken sum rule).

Very few free parameters

By performing a NLO QCD evolution of these PDF, we were able to obtain a good description of a large set of very precise data on $F_2^p(x,Q^2), F_2^n(x,Q^2), xF_3^{\nu N}(x,Q^2)$ and $g_1^{p,d,n}(x,Q^2)$, in correspondence with ten free parameters for the light quark sector with some physical significance:

- * the four potentials $X_{0u}^+, \ X_{0u}^-, \ X_{0d}^-, \ X_{0d}^+,$
- * the universal temperature \bar{x} ,
- * and $b, \bar{b}, \tilde{b}, b_G, \tilde{A}$.

Very few free parameters

By performing a NLO QCD evolution of these PDF, we were able to obtain a good description of a large set of very precise data on $F_2^p(x,Q^2), F_2^n(x,Q^2), xF_3^{\nu N}(x,Q^2)$ and $g_1^{p,d,n}(x,Q^2)$, in correspondance with ten free parameters for the light quark sector with some physical significance:

- * the four potentials $X_{0u}^+, \ X_{0u}^-, \ X_{0d}^-, \ X_{0d}^+,$
- * the universal temperature \bar{x} ,
- * and $b, \bar{b}, \tilde{b}, b_G, \tilde{A}$.

We also have three additional parameters, $A,\ \bar{A},\ A_G$, which are fixed by 3 normalization conditions .

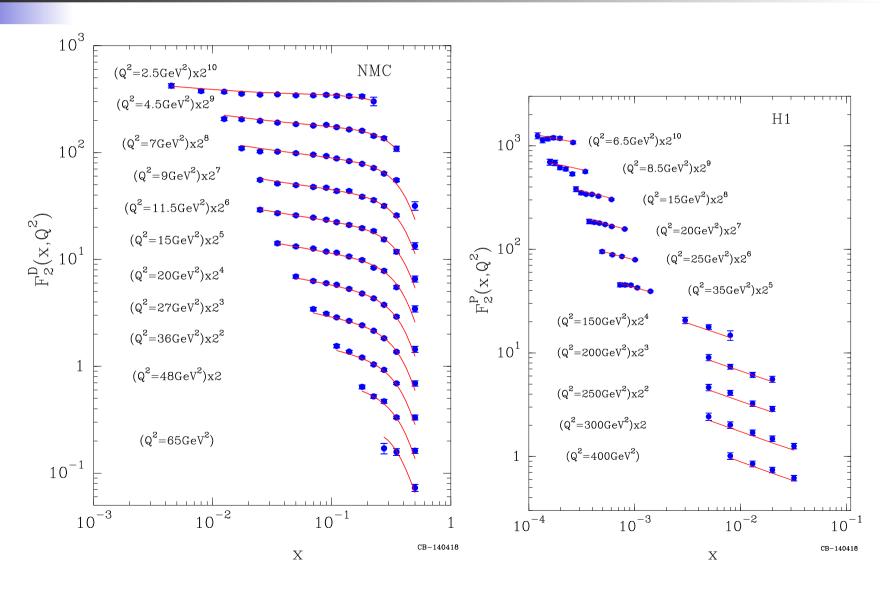
$$u - \bar{u} = 2, \quad d - \bar{d} = 1$$

and the momentum sum rule.

There are several additional parameters to describe the strange quark-antiquark sector and for the gluon polarization. We use the constraint $s - \bar{s} = 0$.

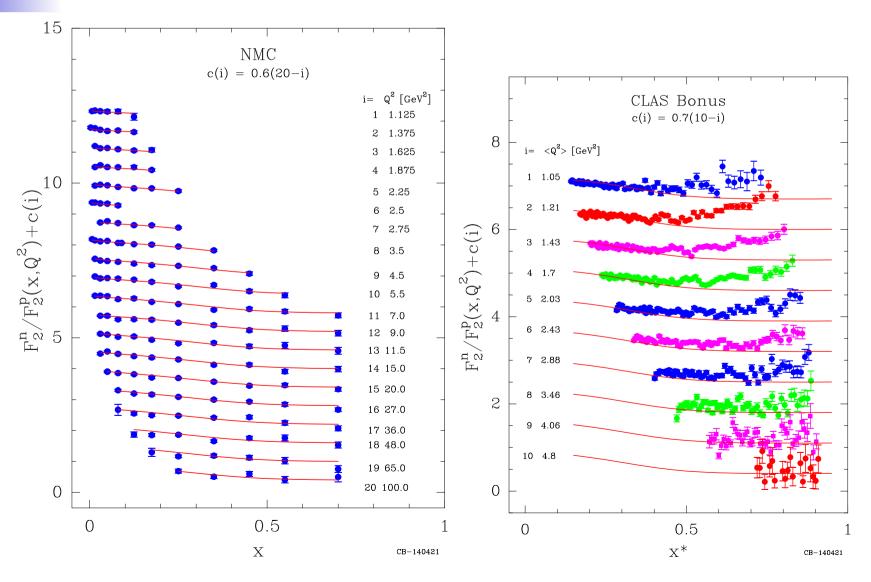
We note that potentials become smaller for heaviest quarks and since $X_{0s}^- > X_{0s}^+$, we will have $\Delta s < 0$ like for d-quarks.

Some data on $F_2^D(x,Q^2), F_2^p(x,Q^2)$



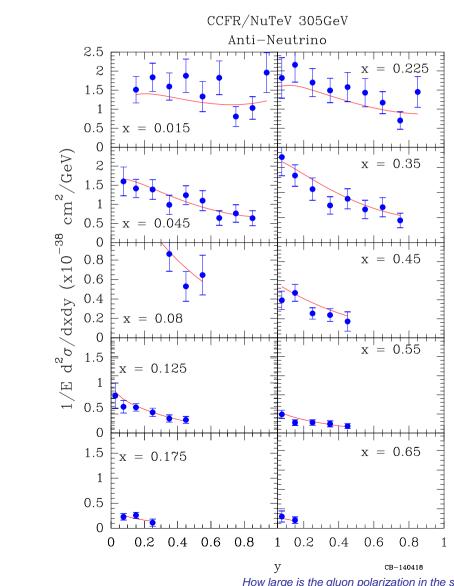
How large is the gluon polarization in the statistical parton distributions approach? - p. 10/20

Some data on $F_2^n(x,Q^2)/F_2^p(x,Q^2)$



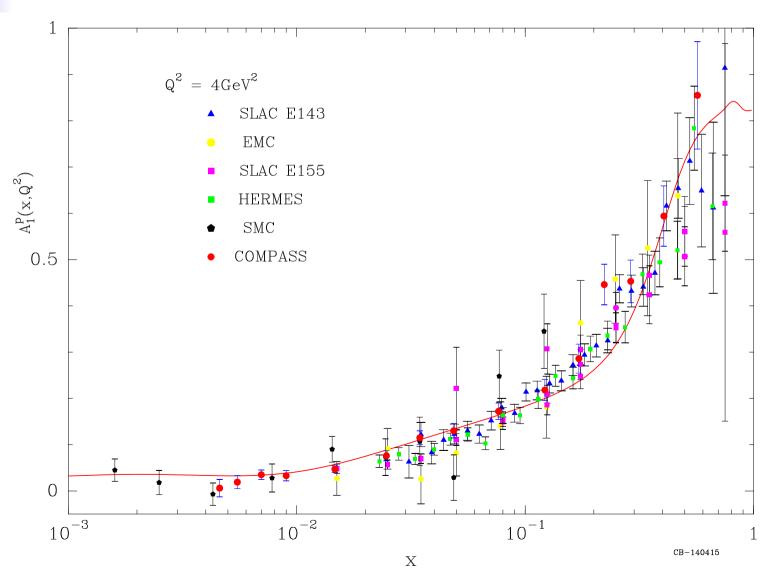
How large is the gluon polarization in the statistical parton distributions approach? - p. 11/20

Some data on anti-neutrino



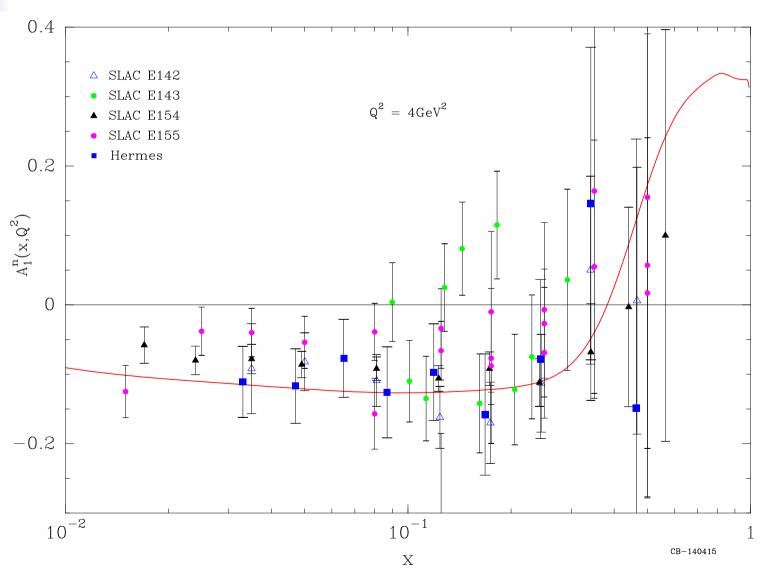
How large is the gluon polarization in the statistical parton distributions approach? - p. 12/20

A compilation of data on $A_1^p(x,Q^2)$



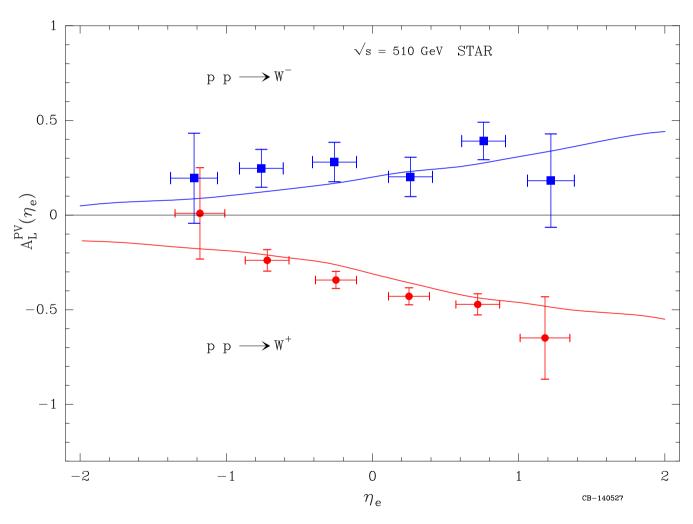
How large is the gluon polarization in the statistical parton distributions approach? - p. 13/20

A compilation of data on $A_1^n(x,Q^2)$



How large is the gluon polarization in the statistical parton distributions approach? - p. 14/20

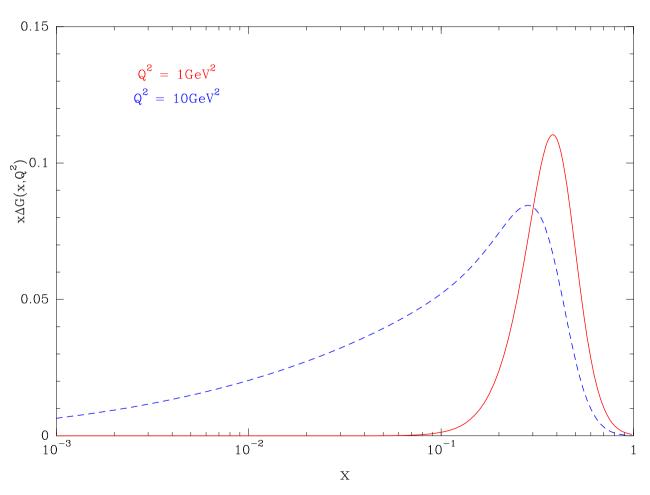
Helicity asymmetry in W^{\pm} production at BNL-RHIC (BBS, PLB 726, 296 (2013))



Comparison of our prediction with STAR data (2014)

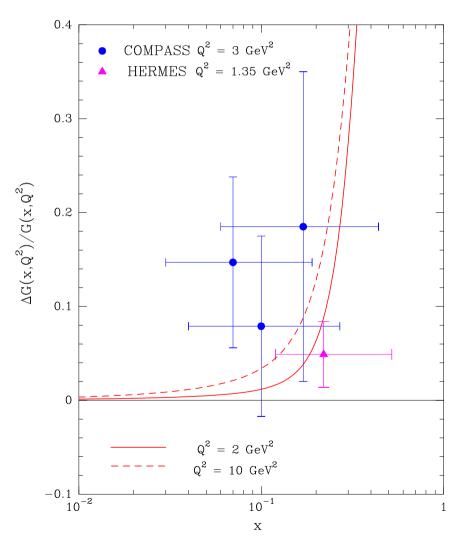
The gluon helicity distribution $x\Delta G(x,Q^2)$

arXiv:1408.7057 [hep-ph]



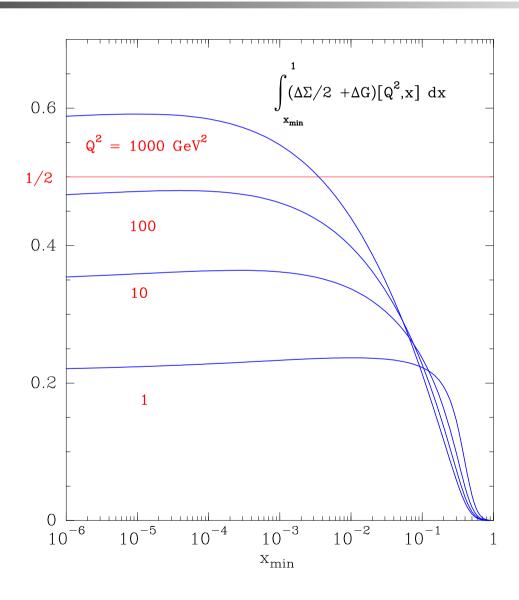
At $Q_0^2 = 1 \text{GeV}^2$ it is concentrated in the x = 0.4 region

The ratio $\Delta G(x,Q^2)/G(x,Q^2)$

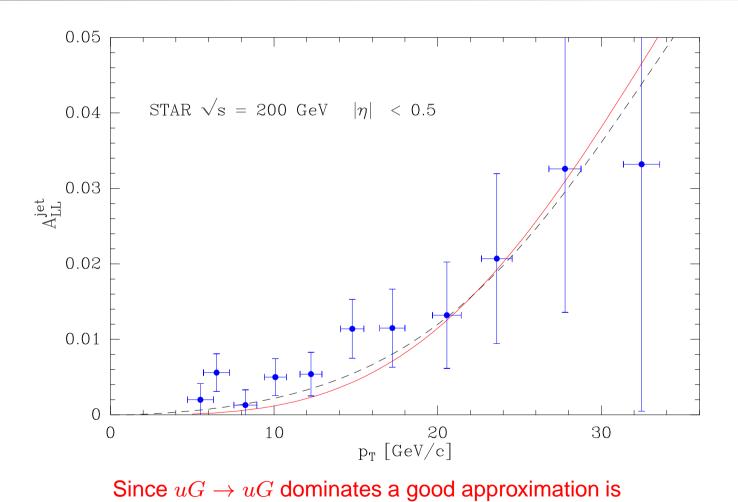


Comparison with HERMES and recent COMPASS data

The proton helicity sum rule



A_{LL} at BNL-RHIC



 $A_{LL}^{jet}=krac{\Delta G(x_T)}{G(x_T)}\cdotrac{\Delta u(x_T)}{u(x_T)}$ with $x_T=2p_T/\sqrt{s}$ and k=1/7

Conclusions

- A new set of PDF is constructed in the framework of a statistical approach of the nucleon.
- All unpolarized and polarized distributions depend upon a small number of free parameters, with some physical meaning.
- New tests against experiments in particular, for unpolarized and polarized sea distributions, are very satisfactory.
- A large positive gluon helicity distribution emerges concentrated in the medium x-region

NEED TO BE CONFIRMED