Twist expansion of differential cross-sections of forward Drell-Yan process

Tomasz Stebel

(with Leszek Motyka and Mariusz Sadzikowski)
M. Smoluchowski Institute of Physics, Jagiellonian University

Introduction

- The forward DY at the LHC provide the sensitive measurements of parton densities down to very small x - Kinematic region not explored before LHC.
- Multiple scattering, higher twist effects. Important to extract the standard twist-2 parton densities with higher precision.
- Four independent structure functions. Investigating them we are more sensitive to higher twists than in DIS (Lam-Tung relation).
- k_{T}-factorization framework and color dipole model.
- Extension of Golec-Biernat et al results to angular and photon transverse momentum dependent cross section.

Drell -Yan process

Drell -Yan process

Forward Drell-Yan: $x_{1} \ll x_{2} \approx 0.1$
Large gluon density
NLO diagrams are dominant

Drell -Yan in target rest frame

- Cross section (k_{T} factorization): lepton angles $d \Omega$

$$
\begin{aligned}
& \frac{d \sigma}{\frac{d x_{F} d M^{2} d \Omega d^{2} q_{T}}{\sim} \sim \int_{x_{F}}^{1} d z \frac{\wp\left(x_{F} / z\right)}{1-z} \int d^{2} k_{T} \frac{f\left(x_{g}, k_{T}\right)}{k_{T}{ }^{4}} \overline{A_{(\sigma)}} A_{(\lambda)} L^{(\sigma \lambda)}} \\
& \text { p.d.f. } \\
& \frac{f\left(x_{g}, k_{T}\right)}{k_{T}{ }^{4}}=-\frac{1}{2} \int d^{2} r e^{i \overrightarrow{k_{T}} \vec{r}} \hat{\sigma}(r)
\end{aligned}
$$

Invariant and helicity structure functions

Two ways of hadron tensor decomposition:

- Invariant structure functions:

$$
W^{\mu \nu}=-T_{1} \tilde{g}^{\mu \nu}+T_{2} \tilde{P}^{\mu} \tilde{P}^{\nu}-T_{3} \frac{1}{2}\left(\tilde{P}^{\mu} \tilde{p}^{\nu}+\tilde{p}^{\mu} \tilde{P}^{\nu}\right)+T_{4} \tilde{p}^{\mu} \tilde{p}^{\nu}
$$

$$
\tilde{g}^{\mu \nu}=g^{\mu \nu}-q^{\mu} q^{\nu} / q^{2}, P=P_{1}+P_{2}, p=P_{1}-P_{2} \text { and } P^{\mu}=\tilde{g}^{\mu \nu} P_{\nu} / \sqrt{s}, \tilde{p}^{\mu}=\tilde{g}^{\mu \nu} p_{\nu} / \sqrt{s} .
$$

Helicity structure functions (depend on choice of foton polarization frame):
$W^{\mu \nu}=-\tilde{g}^{\mu \nu}\left(W_{T}+W_{T T}\right)-X^{\mu} X^{\nu} W_{T T}+Z^{\mu} Z^{\nu}\left(W_{L}-W_{T}-W_{T T}\right)-\left(\tilde{X}^{\mu} Z^{\nu}+Z^{\mu} X \nu\right) W_{L T}$

$$
\frac{d \sigma}{d x_{F} d M^{2} d \Omega d^{2} q_{\perp}}=\frac{\alpha_{e m}^{2} \sigma_{0}}{2(2 \pi)^{4} M^{4}}\left[W_{L}\left(1-\cos ^{2} \theta\right)+W_{T}\left(1+\cos ^{2} \theta\right)+W_{T T}\left(\sin ^{2} \theta \cos 2 \phi\right)+W_{L T}(\sin 2 \theta \cos \phi)\right]
$$

- One can find (linear) relation between T_{i} and W_{j}.

Mellin tansform

$$
\begin{gathered}
\frac{d \sigma}{d x_{F} d M^{2} d \Omega d^{2} q_{T}} \sim L^{(\sigma \lambda)} \int_{x_{F}}^{1} d z \frac{\wp\left(x_{F} / z\right)}{1-z} \int d^{2} r \hat{\sigma}(r) \underbrace{\int d^{2} k_{T} e^{i \overrightarrow{k_{T}} \vec{r}} \overline{A_{(\sigma)}} A_{(\lambda)}} \\
\equiv \phi_{\sigma \lambda}(r) \\
\text { impact factor } \\
\int d^{2} r \hat{\sigma}(r) \phi_{\sigma \lambda}(r) \underset{\substack{\text { inv. Mellin transform }}}{\square \int_{C} \frac{d s}{2 \pi i}\left(\frac{z^{2} Q_{0}^{2}}{4} r\right)^{s} \tilde{\sigma}(-s)} \int_{C} \frac{d s}{2 \pi i}\left(\frac{Q_{o}{ }^{2}}{M^{2}}\right)^{s} \tilde{\sigma}(-S) \tilde{\phi}_{\sigma \lambda}(s)
\end{gathered}
$$

$$
\tilde{\phi}_{\sigma \lambda}(s)=\int_{0}^{\infty} \frac{d r^{2}}{r^{2}} r^{2 s} \phi_{\sigma \lambda}(r)
$$

Twist expansion of q_{T}-dependent cross section

$$
\begin{aligned}
& \frac{d \sigma_{T}}{d x_{F} d M^{2} d \Omega d^{2} q_{\perp}}=\frac{\alpha_{e m}^{2}}{2(2 \pi)^{4} M^{4}}\left(1+\cos ^{2} \theta\right) \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{1+(1-z)^{2}}{z^{2}(1-z)} \int_{C} \frac{d s}{2 \pi i}\left(\frac{z^{2} Q_{0}^{2}}{\eta_{z}^{2}}\right)^{s} \tilde{\sigma}(-s) \times \\
& \times \frac{1}{2}\left\{\frac{2 q_{\perp}^{2} / \eta_{z}^{2}}{1+q_{\perp}^{2} / \eta_{z}^{2}} \Gamma(s+1) \Gamma(s+2){ }_{2} F_{1}\left(s+1, s+2,2,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)-\right. \\
&\left.\Gamma(s+1)^{2}\left[{ }_{2} F_{1}\left(s+1, s+1,1,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)-(s+1){ }_{2} F_{1}\left(s+1, s+2,1,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)\right]\right\}
\end{aligned} \underbrace{=\tilde{\phi}_{++}(s)+\tilde{\phi}_{--}(s)}_{\eta_{z}^{2}=M^{2}(1-z)} ?
$$

We have:

- two hard scales: M, q_{T}
- one soft scale: $Q_{o} \longleftarrow$ twist expansion \equiv expansion in powers of Q_{o}

$$
Q_{o} \ll M, q_{T}
$$

Twist expansion of q_{T}-dependent cross section

$$
\begin{aligned}
& \frac{d \sigma_{T}}{d x_{F} d M^{2} d \Omega d^{2} q_{\perp}}=\frac{\alpha_{e m}^{2}}{2(2 \pi)^{4} M^{4}}\left(1+\cos ^{2} \theta\right) \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{1+(1-z)^{2}}{z^{2}(1-z)} \int_{C} \frac{d s}{2 \pi i}\left(\frac{z^{2} Q_{0}^{2}}{\eta_{z}^{2}}\right){ }^{s} \tilde{\sigma}(-s) \times \\
& \quad \times \frac{1}{2}\left\{\frac{2 q_{\perp}^{2} / \eta_{z}^{2}}{1+q_{\perp}^{2} / \eta_{z}^{2}} \Gamma(s+1) \Gamma(s+2){ }_{2} F_{1}\left(s+1, s+2,2,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)-\right. \\
& \left.\Gamma(s+1)^{2}\left[{ }_{2} F_{1}\left(s+1, s+1,1,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)-(s+1){ }_{2} F_{1}\left(s+1, s+2,1,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)\right]\right\} \\
& \\
& \quad \eta_{z}^{2}=M^{2}(1-z)
\end{aligned}
$$

$$
\hat{\sigma}(\vec{\rho})=\sigma_{0}\left(1-e^{-\rho^{2}}\right) \quad \Longrightarrow \tilde{\sigma}(-s)=-\sigma_{0} \Gamma(-s)
$$

Twists come from poles of Γ :
$s=1-\mathrm{tw} .2$
$s=2-\mathrm{tw} .4$

Twist expansion of q_{T}-dependent cross section

Twist 2

$$
\begin{aligned}
& W_{L}^{(2)}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{4 M^{6} q_{\perp}^{2}(1-z)^{2}}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}} \\
& W_{T}^{(2)}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right)\left[1+(1-z)^{2}\right] \frac{M^{4}\left[q_{\perp}^{4}+M^{4}(1-z)^{2}\right]}{2\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}}
\end{aligned}
$$

$$
W_{T T}^{(2)}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{2 M^{6} q_{\perp}^{2}(1-z)^{2}}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}}
$$

$$
W_{L T}^{(2)}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right)(2-z) \frac{M^{5} q_{\perp}\left[-q_{\perp}^{2}+M^{2}(1-z)\right](1-z)}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}}
$$

Twist 4

$$
\begin{gathered}
W_{L}^{(4)}=\frac{Q_{0}^{4}}{M^{4}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) z^{2} \times \\
\times \frac{4 M^{8}\left[7 q_{\perp}^{2}-10 M^{2} q_{\perp}^{2}(1-z)+M^{4}(1-z)^{2}\right](1-z)^{2}}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{6}} \\
\times \frac{M^{6}\left[q_{\perp}^{2}-2 M^{2}(1-z)\right]\left[q_{\perp}^{4}-4 M^{2} q_{\perp}^{2}(1-z)+M^{4}(1-z)^{2}\right]}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{6}}
\end{gathered}
$$

$W_{T T}^{(4)}=\frac{Q_{0}^{4}}{M^{4}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) z^{2} \frac{12 M^{8} q_{\perp}^{2}\left[q_{\perp}^{2}-2 M^{2}(1-z)\right](1-z)^{2}}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{6}}$
$W_{L T}^{(4)}=\frac{Q_{0}^{4}}{M^{4}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right)(2-z) \sqrt{1-z} z^{2} \times$
$\times \frac{2 M^{7} q_{\perp}\left[-2 q_{\perp}^{2}+M^{2}(1-z)\right]\left[q_{\perp}^{2}-5 M^{2}(1-z)\right](1-z)^{2}}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{6}}$

Twist expansion of q_{T}-dependent cross section

Use relations between T_{i} and W_{j} to get twist expansion of T_{i} :

$$
\begin{aligned}
& T_{1}^{(2)}= \frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{M^{4}\left[4 M^{2} q_{\perp}^{2}(1-z)^{2}+q_{\perp}^{4}(2-z(2-z))+M^{4}(1-z)^{2}(2-(2-z) z)\right]}{2\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}} \\
& T_{2}^{(2)}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{-M^{6}\left[2 s^{2} x_{F}^{4}(1-z)^{2}+2 s x_{F}^{2}\left(q_{\perp}^{2}+M^{2}(1-z)\right) z(1-z)+\left(q_{\perp}^{2}+M^{2}(1-z)\right)^{2} z^{2}\right]}{2 s x_{F}^{2}\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}} \\
& T_{3}^{(2)}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{M^{6}\left[-2 s^{2} x_{F}^{4}(1-z)^{2}+\left(q_{\perp}^{2}+M^{2}(1-z)\right)^{2} z^{2}\right]}{s x_{F}^{2}\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}} \\
& T_{4}^{(2)}= \frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{-M^{6}\left[2 s^{2} x_{F}^{4}(1-z)^{2}-2 s x_{F}^{2}\left(q_{\perp}^{2}+M^{2}(1-z)\right) z(1-z)+\left(q_{\perp}^{2}+M^{2}(1-z)\right)^{2} z^{2}\right]}{2 s x_{F}^{2}\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}}
\end{aligned}
$$

Lam-Tung relation

Lam, Tung Phys.Lett. B 80, 228 :

$$
T_{1}+\left(\frac{q_{P}^{2}}{M^{2}}-1\right) T_{2}-\frac{q_{P} q_{p}}{M^{2}} T_{3}+\left(\frac{q_{p}^{2}}{M^{2}}+1\right) T_{4}=0
$$

One can rewrite it using relations between T_{i} and W_{j} :

Gelis, Jalilian-Marian

$$
\begin{aligned}
& W_{T T}^{(2)}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{2 M^{6} q_{\perp}^{2}(1-z)^{2}}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}} \\
& W_{L}^{(2)}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{4 M^{6} q_{\perp}^{2}(1-z)^{2}}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}}
\end{aligned}
$$

Lam-Tung relation satisfied at the leading twist
Next to leading twist:

$$
W_{L}^{(4)}-2 W_{T T}^{(4)}=\frac{Q_{0}^{4}}{M^{4}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) z^{2} \frac{4 M^{8}(1-z)^{2}}{\left[q_{\perp}^{2}+M^{2}(1-z)\right]^{4}}
$$

Twist expansion of cross section integrated over q_{T}

$$
\begin{aligned}
& \frac{d \sigma_{T}}{d x_{F} d M^{2} d \Omega d^{2} q_{\perp}}= \frac{\alpha_{e m}^{2}}{2(2 \pi)^{4} M^{4}}\left(1+\cos ^{2} \theta\right) \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{1+(1-z)^{2}}{z^{2}(1-z)} \int_{C} \frac{d s}{2 \pi i}\left(\frac{z^{2} Q_{0}^{2}}{\eta_{z}^{2}}\right)^{s} \tilde{\sigma}(-s) \times \\
& \times \frac{1}{2}\left\{\frac{2 q_{\perp}^{2} / \eta_{z}^{2}}{1+q_{\perp}^{2} / \eta_{z}^{2}} \Gamma(s+1) \Gamma(s+2){ }_{2} F_{1}\left(s+1, s+2,2,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)-\right. \\
&\left.\Gamma(s+1)^{2}\left[{ }_{2} F_{1}\left(s+1, s+1,1,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)-(s+1){ }_{2} F_{1}\left(s+1, s+2,1,-\frac{q_{\perp}^{2}}{\eta_{z}^{2}}\right)\right]\right\}
\end{aligned}
$$

Integrate over $d^{2} q_{T}$:

$$
\begin{aligned}
\frac{d \sigma_{T}}{d x_{F} d M^{2} d \Omega}= & \frac{\alpha_{e m}^{2}}{2(2 \pi)^{3} M^{2}}\left(1+\cos ^{2} \theta\right) \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{1+(1-z)^{2}}{z^{2}} \times \\
& \times \int_{C} \frac{d s}{2 \pi i}\left(\frac{z^{2} Q_{0}^{2}}{4 \eta_{z}^{2}}\right)^{s} \tilde{\sigma}(-s)\left\{\frac{\sqrt{\pi} \Gamma(s) \Gamma(s+1) \Gamma(s+2)}{4 \Gamma\left(s+\frac{3}{2}\right)}\right\}
\end{aligned}
$$

Twist expansion of cross section integrated over q_{T}

$$
\begin{aligned}
\frac{d \sigma_{T}}{d x_{F} d M^{2} d \Omega}= & \frac{\alpha_{e m}^{2}}{2(2 \pi)^{3} M^{2}}\left(1+\cos ^{2} \theta\right) \int_{x_{F}}^{1} d z \nprec\left(x_{F} / z\right) \frac{1+(1-z)^{2}}{z^{2}} \times \\
& \times \int_{C} \frac{d s}{2 \pi i}\left(\frac{z^{2} Q_{0}^{2}}{4 \eta_{z}^{2}}\right)^{s} \tilde{\sigma}(-s)\left\{\frac{\sqrt{\pi} \Gamma(s) \Gamma(s+1) \Gamma(s+2)}{4 \Gamma\left(s+\frac{3}{2}\right)}\right\}
\end{aligned}
$$

Taking $s=1$ for tw. 2:

$$
\int W_{T}^{(2)} d^{2} q_{\perp}=\frac{Q_{0}^{2}}{M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right) \frac{1+(1-z)^{2}}{1-\frac{z}{\alpha}} \frac{\pi M^{2}}{3}
$$

Integrand have double pole in $s=1$:
see Golec-Biernat, Lewandowska, Staśto; arXiv:1008.2652v1

$$
\begin{array}{r}
\tilde{W}_{T}^{(2)}=\frac{Q_{0}^{2}}{4 M^{2}}\left\{\wp\left(x_{F}\right)\left[-1+\frac{4}{3} \gamma_{E}-\frac{2}{3} \ln \left(\frac{Q_{0}^{2}}{4 M^{2}\left(1-x_{F}\right)}\right)+\frac{2}{3} \psi(5 / 2)\right]+\right. \\
\left.+\frac{2}{3} \int_{x_{F}}^{1} d z \frac{\wp\left(x_{F} / z\right)\left[1+(1-z)^{2}\right]-\wp\left(x_{F}\right)}{1-z}\right\} \\
\tilde{W}_{i}=\frac{1}{2 \pi M^{2}} \int W_{i} d^{2} q_{\perp}
\end{array}
$$

Twist expansion of cross section integrated over q_{T}

Twist 2

$$
\tilde{W}_{L}^{(2)}=\frac{Q_{0}^{2}}{3 M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right)
$$

$$
\tilde{W}_{T}^{(2)}=\frac{Q_{0}^{2}}{4 M^{2}}\left\{\wp\left(x_{F}\right)\left[-1+\frac{4}{3} \gamma_{E}-\frac{2}{3} \ln \left(\frac{Q_{0}^{2}}{4 M^{2}\left(1-x_{F}\right)}\right)+\frac{2}{3} \psi(5 / 2)\right]+\right.
$$

$$
\left.+\frac{2}{3} \int_{x_{F}}^{1} d z \frac{\wp\left(x_{F} / z\right)\left[1+(1-z)^{2}\right]-\wp\left(x_{F}\right)}{1-z}\right\}
$$

$$
\tilde{W}_{T T}^{(2)}=\frac{Q_{0}^{2}}{6 M^{2}} \int_{x_{F}}^{1} d z \wp\left(x_{F} / z\right)
$$

$$
\tilde{W}_{L T}^{(2)}=0
$$

Twist 3

$$
\begin{array}{r}
\tilde{W}_{L T}^{(3)}=\underset{\uparrow}{\operatorname{const}} \cdot \frac{Q_{0}^{3}}{M^{3}} \wp\left(x_{F}\right) \\
\approx 0.593
\end{array}
$$

Twist 4

$$
\begin{aligned}
\tilde{W}_{L}^{(4)}=\frac{2}{15} \frac{Q_{0}^{4}}{M^{4}}\left\{\wp (x _ { F }) \left[3-2 \gamma_{E}\right.\right. & \left.+\ln \left(\frac{Q_{0}^{2}}{4 M^{2}\left(1-x_{F}\right)}\right)-\psi(7 / 2)\right] \\
& \left.-\int_{x_{F}}^{1} d z \frac{\wp\left(x_{F} / z\right) z^{2}-\wp\left(x_{F}\right)}{1-z}\right\}
\end{aligned}
$$

$$
\tilde{W}_{T}^{(4)}=\ldots
$$

$$
\vdots
$$

Summary

- Mellin representation of forward DY impact factors.
- Twist expansion of differential cross-section in the lepton angles and the DY pair transverse momentum q_{T}. Both for invariant and helicity structure functions.
- Twist expansion for cross-section integrated over q_{T}.
- Lam-Tung relation as a way of measuring higher twist effects.

... and Outlook

- Phenomenological calculation of twists and comparison with data.
- Comparison of different forms of dipole cross section.

Thank you

Relation beetween invariant and helicity structure functions

- Invariant structure functions:

$$
\begin{gathered}
W^{\mu \nu}=-T_{1} \tilde{g}^{\mu \nu}+T_{2} \tilde{P}^{\mu} \tilde{P}^{\nu}-T_{3} \frac{1}{2}\left(\tilde{P}^{\mu} \tilde{p}^{\nu}+\tilde{p}^{\mu} \tilde{P}^{\nu}\right)+T_{4} \tilde{p}^{\mu} \tilde{p}^{\nu} \\
\tilde{g}^{\mu \nu}=g^{\mu \nu}-q^{\mu} q^{\nu} / q^{2}, P=P_{1}+P_{2}, p=P_{1}-P_{2} \text { and } P^{\mu}=\tilde{g}^{\mu \nu} P_{\nu} / \sqrt{s}, \tilde{p}^{\mu}=\tilde{g}^{\mu \nu} p_{\nu} / \sqrt{s} .
\end{gathered}
$$

- Helicity structure functions:

$$
\begin{aligned}
& W^{\mu \nu}=-\tilde{g}^{\mu \nu}\left(W_{T}+W_{T T}\right)-X^{\mu} X^{\nu} W_{T T}+Z^{\mu} Z^{\nu}\left(W_{L}-W_{T}-W_{T T}\right)-\left(\tilde{X}^{\mu} Z^{\nu}+Z^{\mu} X \nu\right) W_{L T} \\
& Z^{\mu}=\alpha \tilde{P}^{\mu}+\beta \tilde{p}^{\mu} \\
& X^{\mu}=\alpha^{\prime} \tilde{P}^{\mu}+\beta^{\prime} \tilde{p}^{\mu} \\
& \frac{d \sigma}{} \quad \text { in our case: target rest frame } \\
& \frac{d \sigma}{d x_{F} d M^{2} d \Omega d^{2} q_{\perp}}=\frac{\alpha_{e m}^{2} \sigma_{0}}{2(2 \pi)^{4} M^{4}}\left[W_{L}\left(1-\cos ^{2} \theta\right)+W_{T}\left(1+\cos ^{2} \theta\right)+W_{T T}\left(\sin ^{2} \theta \cos 2 \phi\right)+W_{L T}(\sin 2 \theta \cos \phi)\right]
\end{aligned}
$$

Invariant and helicity structure functions

One can easily obtain relations between these two sets of structure functions:

$$
\begin{aligned}
T_{1} & =W_{T}+W_{T T} \\
T_{2} & =\frac{M^{2}}{x_{F}^{2} s} W_{L}-\frac{M^{2}}{x_{F}^{2} s} W_{T}-\frac{\left(M^{2}+s x_{F}^{2}\right)^{2}-2 s x_{F}^{2} q_{\perp}^{2}+q_{\perp}^{4}}{2 x_{F}^{2} s q_{\perp}^{2}} W_{T T}+\frac{M\left(M^{2}+s x_{F}^{2}-q_{\perp}^{2}\right)}{x_{F}^{2} s q_{\perp}} W_{L T} \\
T_{3} & =-\frac{2 M^{2}}{x_{F}^{2} s} W_{L}+\frac{2 M^{2}}{x_{F}^{2} s} W_{T}-\frac{M^{4}-s^{2} x_{F}^{4}+q_{\perp}^{4}}{x_{F}^{2} s q_{\perp}^{2}} W_{T T}+\frac{2 M\left(-M^{2}+q_{\perp}^{2}\right)}{x_{F}^{2} s q_{\perp}} W_{L T} \\
T_{4} & =\frac{M^{2}}{x_{F}^{2} s} W_{L}-\frac{M^{2}}{x_{F}^{2} s} W_{T}-\frac{\left(M^{2}-s x_{F}^{2}\right)^{2}+2 s x_{F}^{2} q_{\perp}^{2}+q_{\perp}^{4}}{2 x_{F}^{2} s q_{\perp}^{2}} W_{T T}+\frac{M\left(M^{2}-s x_{F}^{2}-q_{\perp}^{2}\right)}{x_{F}^{2} s q_{\perp}} W_{L T}
\end{aligned}
$$

Relations in target rest frame

