Probing GPDs in Ultraperipheral Collisions

Jakub Wagner

Theoretical Physics Department National Center for Nuclear Research Warsaw, Poland

DIFFRACTION 2014, Primošten

timelike-DVCS: B.Pire, L.Szymanowski $J/\Psi \ \ {\rm photoproduction:} \ \ {\rm D.Ivanov, \ L.Szymanowski}$

Deep Inelastic Scattering $e\, p\, ightarrow\, e\, X$

In the Björken limit i.e. when the photon virtality $Q^2=-q^2$ and the squared hadronic c.m. energy $(p+q)^2$ become large, with the ratio $x_B=\frac{Q^2}{2p\cdot q}$ fixed, the cross section factorizes into a hard partonic subprocess calculable in the perturbation theory, and a parton distributions.

- ► Parton distributions encode the distribution of longitudinal momentum and polarization carried by quarks, antiquarks and gluons within fast moving hadron
- PDFs don't provide infomation about how partons are distributed in the transverse plane and ...
- about how important is the orbital angular momentum in making up the total spin of the nucleon.
- Recently growing interest in the exclusive scattering processes, which
 may shed some light on these issues through the generalized parton
 distributions (GPDs)

DVCS

The simplest and best known process is Deeply Virtual Compton Scattering: $e\,p\,
ightarrow\,e\,p\,\gamma$

Factorization into GPDs and perturbative coefficient function - on the level of amplitude.

DIS: $\sigma = PDF \otimes partonic cross section$

 $DVCS: \hspace{1cm} \mathcal{M} = GPD \otimes partonic \ amplitude$

GPDs

- GPDs enter factorization theorems for hard exclusive reactions (DVCS, deeply virtual meson production, TCS etc.), in a similar manner as PDFs enter factorization theorems for inclusive (DIS, etc.)
- ▶ GPDs are functions of x, t, ξ, μ_F^2
- ► First moment of GPDs enters the Ji's sum rule for the angular momentum carried by partons in the nucleon,
- ▶ 2+1 imaging of nucleon,
- Deeply Virtual Compton Scattering (DVCS) is a golden channel for GPDs extraction,

DVCS - what else, and why

- ▶ Difficult: exclusivity, 3 variables, GPD enter through convolutions, only GPD(ξ, ξ, t) accesible through DVCS at LO!
- universality,
- ▶ flavour separation,

Meson production - additional information (and difficulties),

So, in addition to spacelike DVCS ...

Figure: Deeply Virtual Compton Scattering (DVCS) : $lN o l'N'\gamma$

Berger, Diehl, Pire, 2002

Figure: Timelike Compton Scattering (TCS): $\gamma N \to l^+ l^- N'$

Why TCS:

- universality of the GPDs
- lacktriangle another source for GPDs (special sensitivity on real part of GPD H),
- ► spacelike-timelike crossing,
- first step towards DDCVS,

General Compton Scattering:

$$\gamma^*(q_{in})N(p) \to \gamma^*(q_{out})N'(p')$$

variables, describing the processes of interest in this generalized Bjorken limit, are the scaling variable ξ and skewness $\eta>0$:

$$\xi = -\frac{q_{out}^2 + q_{in}^2}{q_{out}^2 - q_{in}^2} \eta \,, \quad \eta = \frac{q_{out}^2 - q_{in}^2}{(p + p') \cdot (q_{in} + q_{out})} \,.$$

- $\qquad \qquad \text{DDVCS:} \qquad q_{in}^2 < 0 \,, \qquad q_{out}^2 > 0 \,, \qquad \eta \neq \xi$
- $\qquad \text{DVCS:} \quad q_{in}^2 < 0 \,, \quad q_{out}^2 = 0 \,, \qquad \eta = \xi > 0 \label{eq:power_state}$
- $\qquad \qquad \text{TCS:} \qquad q_{in}^2 = 0 \,, \qquad q_{out}^2 > 0 \,, \qquad \eta = -\xi > 0 \,$

Coefficient functions and Compton Form Factors

CFFs are the GPD dependent quantities which enter the amplitudes. They are defined through relations:

$$\mathcal{A}^{\mu\nu}(\xi,\eta,t) = -e^2 \frac{1}{(P+P')^+} \, \bar{u}(P') \left[g_T^{\mu\nu} \left(\mathcal{H}(\xi,\eta,t) \, \gamma^+ + \mathcal{E}(\xi,\eta,t) \, \frac{i\sigma^{+\rho}\Delta_{\rho}}{2M} \right) \right. \\ \left. + i\epsilon_T^{\mu\nu} \left(\widetilde{\mathcal{H}}(\xi,\eta,t) \, \gamma^+ \gamma_5 + \widetilde{\mathcal{E}}(\xi,\eta,t) \, \frac{\Delta^+ \gamma_5}{2M} \right) \right] u(P) \,,$$

,where:

$$\begin{split} & \mathcal{H}(\boldsymbol{\xi},\boldsymbol{\eta},t) &= + \int_{-1}^{1} dx \, \left(\sum_{q} T^{q}(x,\boldsymbol{\xi},\boldsymbol{\eta}) H^{q}(x,\boldsymbol{\eta},t) + T^{g}(x,\boldsymbol{\xi},\boldsymbol{\eta}) H^{g}(x,\boldsymbol{\eta},t) \right) \\ & \widetilde{\mathcal{H}}(\boldsymbol{\xi},\boldsymbol{\eta},t) &= - \int_{-1}^{1} dx \, \left(\sum_{q} \widetilde{T}^{q}(x,\boldsymbol{\xi},\boldsymbol{\eta}) \widetilde{H}^{q}(x,\boldsymbol{\eta},t) + \widetilde{T}^{g}(x,\boldsymbol{\xi},\boldsymbol{\eta}) \widetilde{H}^{g}(x,\boldsymbol{\eta},t) \right). \end{split}$$

LO and NLO Coefficient functions

▶ DVCS vs TCS at LO

$$D^{VCS}T^{q} = -e_{q}^{2} \frac{1}{x+\eta-i\varepsilon} - (x \to -x) = (^{TCS}T^{q})^{*}$$

$$D^{VCS}\tilde{T}^{q} = -e_{q}^{2} \frac{1}{x+\eta-i\varepsilon} + (x \to -x) = -(^{TCS}\tilde{T}^{q})^{*}$$

$$D^{VCS}Re(\mathcal{H}) \sim P \int \frac{1}{x\pm \eta} H^{q}(x,\eta,t) , \quad D^{VCS}Im(\mathcal{H}) \sim i\pi H^{q}(\pm \eta,\eta,t)$$

► DDVCS at LO

$$^{DDVCS}T^{q} = -e_{q}^{2} \frac{1}{x + \xi - i\varepsilon} - (x \to -x)$$

$$^{DDVCS}Re(\mathcal{H}) \sim P \int \frac{1}{x \pm \xi} H^{q}(x, \eta, t), \quad ^{DVCS}Im(\mathcal{H}) \sim i\pi H^{q}(\pm \xi, \eta, t)$$

But this is only true at LO. At NLO all GPDs hidden in the convolutions.

DVCS vs TCS at LO
 The results for DVCS and TCS cases are simply related:

$$^{TCS}T(x,\eta) = \pm \left(^{DVCS}T(x,\xi=\eta) + i\pi \cdot C_{coll}(x,\xi=\eta)\right)^*$$
,

D.Mueller, B.Pire, L.Szymanowski, J.Wagner, Phys.Rev.D86.

TCS and Bethe-Heitler contribution to exclusive lepton pair photoproduction.

Figure: The Feynman diagram for the Bethe-Heitler amplitude.

Berger, Diehl, Pire, 2002

Figure: Kinematical variables and coordinate axes in the γp and $\ell^+\ell^-$ c.m. frames.

Interference

B-H dominant for not very high energies:

Figure: LO (dotted) and NLO (solid) TCS and Bethe-Heitler (dash-dotted) contributions to the cross section as a function of t for $Q^2=\mu^2=4\,\mathrm{GeV}^2$ integrated over $\theta\in(\pi/4;3\pi/4)$ and over $\phi\in(0;2\pi)$ for $E_\gamma=10\,\mathrm{GeV}(\eta\approx0.11)$.

The interference part of the cross-section for $\gamma p \to \ell^+ \ell^- p$ with unpolarized protons and photons is given by:

$$\frac{d\sigma_{INT}}{dQ'^2 dt d\cos\theta d\varphi} \sim \cos\varphi \cdot \operatorname{Re} \mathcal{H}(\eta, t)$$

Linear in GPD's, odd under exchange of the l^+ and l^- momenta \Rightarrow angular distribution of lepton pairs is a good tool to study interference term.

JLAB 6 GeV data

Rafayel Paremuzyan PhD thesis

Figure: e^+e^- invariant mass distribution vs quasi-real photon energy. For TCS analysis $M(e^+e^-)>1.1\,{\rm GeV}$ and $s_{\gamma p}>4.6\,{\rm GeV}^2$ regions are chosen. Left graph represents e1-6 data set, right one is from e1f data set.

Theory vs experiment

R.Paremuzyan and V.Guzey:

$$R = \frac{\int d\phi \cos\phi \int d\theta \,d\sigma}{\int d\phi \int d\theta \,d\sigma}$$

Figure: Thoeretical prediction of the ratio R for various GPDs models. Data points after combining both e1-6 and e1f data sets.

Jefferson Lab PAC 39 Proposal

Timelike Compton Scattering and J/ψ photoproduction on the proton in e^+e^- pair production with CLAS12 at 11 GeV

```
I. Albayrak, <sup>1</sup> V. Burkert, <sup>2</sup> E. Chudakov, <sup>2</sup> N. Dashyan, <sup>3</sup> C. Desnault, <sup>4</sup> N. Gevorgyan, <sup>3</sup> Y. Ghandilyan, <sup>3</sup> B. Guegan, <sup>4</sup> M. Guidal*, <sup>4</sup> V. Guzey, <sup>2</sup>· <sup>5</sup> K. Hicks, <sup>6</sup> T. Horn*, <sup>1</sup> C. Hyde, <sup>7</sup> Y. Ilieva, <sup>8</sup> H. Jo, <sup>4</sup> P. Khetarpal, <sup>9</sup> F.J. Klein, <sup>1</sup> V. Kubarovsky, <sup>2</sup> A. Marti, <sup>4</sup> C. Munoz Camacho, <sup>4</sup> P. Nadel-Turonski, <sup>8</sup> <sup>1</sup> S. Siccolai, <sup>4</sup> R. Paremuzyan, <sup>1</sup> <sup>4</sup> S. Stepanyan, <sup>1</sup> P. Sabatié, <sup>11</sup> C. Salgado, <sup>12</sup> P. Schweitzer, <sup>13</sup> A. Simonyan, <sup>3</sup> D. Sokhan, <sup>4</sup> S. Stepanyan, <sup>12</sup> L. Szymanowski, <sup>14</sup> H. Voskanyan, <sup>3</sup> J. Wagner, <sup>14</sup> C. Weiss, <sup>2</sup> N. Zachariou, <sup>8</sup> and the CLAS Collaboration. <sup>1</sup> Catholic University of America, Washington, D.C. 20064 <sup>2</sup> Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 <sup>3</sup> Yerevan Physics Institute, 375036 Yerevan, Armenia <sup>4</sup> Institut de Physique Nucleaire d'Orsay, IN2P3, BP 1, 91406 Orsay, France <sup>5</sup> Hampton University, Hampton, Virginia 23668 <sup>6</sup> Ohio University, Athens. Ohio 45701
```

Approved experiment at Hall B, and LOI for Hall A.

Ultraperipheral collisions

$$\sigma^{AB} = \int dk_A \frac{dn^A}{dk_A} \sigma^{\gamma B}(W_A(k_A)) + \int dk_B \frac{dn^B}{dk_B} \sigma^{\gamma A}(W_B(k_B))$$

where $k_{A,B} = \frac{1}{2} x_{A,B} \sqrt{s}$.

BH cross section at UPC

Figure: (a) The BH cross section integrated over $\theta \in [\pi/4, 3\pi/4]$, $\varphi \in [0, 2\pi]$, $Q'^2 \in [4.5, 5.5] \, \mathrm{GeV}^2$, $|t| \in [0.05, 0.25] \, \mathrm{GeV}^2$, as a function of γp c.m. energy squared s. (b) σ_{TCS} as a function of γp c.m. energy squared s, for GRVGJR2008 NLO parametrizations, for different factorization scales $\mu_F^2 = 4$ (dotted), 5 (dashed), 6 (solid) GeV^2 .

For very high energies σ_{TCS} calculated with $\mu_F^2=6\,{\rm GeV^2}$ is much bigger then with $\mu_F^2=4\,{\rm GeV^2}$. Also predictions obtained using LO and NLO GRVGJR2008 PDFs differ significantly.

Figure: The differential cross sections (solid lines) for $t=-0.2\,\mathrm{GeV^2},~Q'^2=5\,\mathrm{GeV^2}$ and integrated over $\theta=[\pi/4,3\pi/4]$, as a function of φ , for $s=10^7\,\mathrm{GeV^2}$ (a), $s=10^5\,\mathrm{GeV^2}$ (b), $s=10^3\,\mathrm{GeV^2}$ (c) with $\mu_F^2=5\,\mathrm{GeV^2}$. We also display the Compton (dotted), Bethe-Heitler (dash-dotted) and Interference (dashed) contributions.

UPC Rate estimates

The pure Bethe - Heitler contribution to σ_{pp} , integrated over $\theta=[\pi/4,3\pi/4]$, $\phi=[0,2\pi],\ t=[-0.05\,\mathrm{GeV^2},-0.25\,\mathrm{GeV^2}],\ Q'^2=[4.5\,\mathrm{GeV^2},5.5\,\mathrm{GeV^2}]$, and photon energies $k=[20,900]\,\mathrm{GeV}$ gives:

$$\sigma_{pp}^{BH}=2.9 \mathrm{pb}$$
 .

The Compton contribution (calculated with NLO GRVGJR2008 PDFs, and $\mu_F^2=5\,{
m GeV}^2)$ gives:

$$\sigma_{pp}^{TCS}=1.9 \mathrm{pb}$$
 .

LHC: rate $\sim 10^5$ events/year with nominal luminosity $(10^{34}\,{\rm cm}^{-2}{\rm s}^{-1})$

Gluon GPDs in the UPC production of heavy mesons

Work in progress with D Yu Ivanov and L Szymanowski

Figure 1: Kinematics of heavy vector meson photoproduction.

D. Yu. Ivanov , A. Schafer , L. Szymanowski and G. Krasnikov - Eur. Phys. J. C34 (2004) 297-316

The amplitude \mathcal{M} is given by factorization formula:

$$\mathcal{M} \sim \left(\frac{\langle O_1 \rangle_V}{m^3}\right)^{1/2} \int_{-1}^1 dx \left[T_g(x,\xi) F^g(x,\xi,t) + T_q(x,\xi) F^{q,S}(x,\xi,t) \right],$$

$$F^{q,S}(x,\xi,t) = \sum_{q=u,d,s} F^q(x,\xi,t).$$

where m is a pole mass of heavy quark, $\langle O_1 \rangle_V$ is given by NRQCD through leptonic meson decay rate.

Hard scattering kernels

$$T_g(x,\xi) = \frac{\xi}{(x-\xi+i\varepsilon)(x+\xi-i\varepsilon)} \mathcal{A}_g\left(\frac{x-\xi+i\varepsilon}{2\xi}\right),$$
$$T_q(x,\xi) = \mathcal{A}_q\left(\frac{x-\xi+i\varepsilon}{2\xi}\right).$$

► LO

$${\cal A}_g^{(0)}(y)=lpha_S\,,$$
 In the first paper it was : $~lpha_S(1+\epsilon)$ ${\cal A}_q^{(0)}(y)=0\,.$

NLO $T_q(x,\xi)$ - unchanged, and in $T_q(x,\xi)$ one has to correct:

$$\left(\log \frac{4m^2}{\mu_F^2} - 1\right) \to \left(\log \frac{4m^2}{\mu_F^2}\right)$$

Erratum is being written, but phenomenological consequences unchanged.

Photoproduction amplitude and cross section - LO

Figure: (left) Imaginary part of the amplitude $\mathcal M$ and (right) photoproduction cross section as a function of $W=\sqrt{s_{\gamma p}}$ for $\mu_F^2=M_{J/\psi}^2\times\{0.5,1,2\}$.

Photoproduction amplitude and cross section - LO and NLO.

Figure: Photoproduction cross section as a function of $W=\sqrt{s_{\gamma p}}$ for $\mu_F^2=M_{J/\psi}^2\times\{0.5,1,2\}$ - LO and NLO

Photoproduction cross section

NLO/LO for large W:

$$\sim \frac{\alpha_S(\mu_R)N_c}{\pi} \ln\left(\frac{1}{\xi}\right) \ln\left(\frac{\frac{1}{4}M_V^2}{\mu_F^2}\right)$$

What to do ??? (PMS??, BLM??, resummation?,...?)

Figure: Photoproduction cross section as a function of $W=\sqrt{s_{\gamma p}}$ for $\mu_F^2=M_{J/\psi}^2\times\{0.5,1,2\}$ - LO and NLO. Thick lines for LO and NLO for $\mu_F^2=1/4M_{J/\psi}^2$.

UPC cross section

Cross section for Ultraperipheral p-Pb collision in the EPA, $\sqrt{s}=5~{\rm TeV}$ as a function of y.

(left) LO and NLO $\mu_F^2=M_{J/\psi}^2\times\{0.5,1,2\}.$ (right) LO and NLO for $\mu_F^2=1/4M_{J/\psi}^2.$

Summary

- GDPs enter factorization theorems for hard exclusive reactions (DVCS, deeply virtual meson production etc.), in a similar manner as PDFs enter factorization theorem for DIS - Ji's sum rule, "tomographic" 3D images
- DVCS is a golden channel, a lot of new experiments planned to measure DVCS - JLAB 12, COMPASS, EIC(?)
- ,but we want to descibe other exclusve processes TCS, double DVCS, DVMP, photoproduction of heavy mesons...
- TCS already measured at JLAB 6 GeV, but much richer and more interesting kinematical region available after upgrade to 12 GeV, maybe possible at COMPASS.
- Ultraperipheral collisions at hadron colliders opens a new way to measure GPDs,
- NLO corrections very important, also important for GPD extraction at $\xi \neq x$.
- ▶ Situation for Υ should be better higher factorization scale, and ξ not that small (comparing to J/Ψ).