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Factorization is the key concept in applied QCD. It makes 
possible to apply perturbarive QCD to description of 
hadronic reactions. Factorization is approximation and it 
proved to be quite efficient

The need for Factorization: QCD is poorly known (does not 
exists as a regular science) in the infrared region (at large 
distances), so lack of such knowledge should be 
approximated/mimicked somehow and the most popular 
way to do it is QCD Factorization 

For simplicity, I focus on the simple and at the same time 
important example of hadronic reaction:
Deep-Inelastic lepton-hadron Scattering
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Structure functions

In order to calculate structure functions, one should know both 
Perturbative and Non-Perturbative QCD but Non-Perturbative QCD is 
known poorly, so straightforward calculation of structure functions 
cannot be performed Instead of straightforward calculations there 
is conventionally  used  approximation of FACTORIZATION 

Projection operators
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Conventional option of arguments of F1, F2

For instance, Hadronic tensor for unpolarized electron-proton 
DIS is conventionally parameterized as follows:
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Factorization for  DIS
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Parton distributions
Phenomenology

Intermediate 
quarks and 

gluons

There is no theory whatsoever to calculate parton distributions. 
The fits for them are made from purely phenomenological
considerations. 
Any formula for them is welcome providing it explains 
available experimental data     
I am presenting  theoretical restrictions on the fits



Collinear Factorization 

S. Catani - M. Ciafaloni – F. Hautmann

Amati-Petronzio-Veneziano, Efremov-Ginzburg-Radyushkin, Libby-Sterman, 
Brodsky-Lepage, Collins-Soper-Sterman

KT- factorization 

These kinds of  factorization were introduced from different 
considerations and are used for different perturbative approaches, 
so they look absolutely unrelated to each other.
I will show they are related and introduce a new kind of factorization

There are well-known the following kinds of  factorization 
in the literature:
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Collinear Factorization KT- factorization 

Cut particles 
in the blobs 
are on-shell 

Pictures look identically but formulae are quite different 

Conventional illustrations of Factorizations



KT-Factorization
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Perturbative terms are calculated 
with  evolution equations

Parton distributions found from 
phenomenological considerations

fraction of longitudinal  moment 

Collinear Factorization

Factorization representations  for DIS structure functions

Unintegrated parton
distribution 

integrated parton
distribution 

factorization scale
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Collinear Factorization 

Different Factorizations imply different parameterizations of 
momenta of the connecting partons
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KT -Factorization 
momentum 
fraction

Actual situation is more involved:

All components of k should be accounted for

k =[࢑૙, ࢑࢞, ࢑࢟, [ࢠ࢑
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When the -dependence is accounted for, we arrive at a 
more general factorization: 

Basic factorization     Ermolaev_Greco-Troyan

T

Perturbative blob: 
Compton scattering off 

partons

Non-perturbative blob: 
Totally unintegrated parton

distributions
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In contrast to the cases of Collinear and KT –factorization, here one can 
apply the standard Feynman rules to the convolution
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Integration in 
collinear 

factorization

integrations in 
KT-factorization

new integration

Integration runs over  the whole phase space

There can be IR and UV singularities in the integrands 
They can be different for different amplitudes  

IR singularities arrive from the region of  small k2 

UV singularities come from large 
Guiding idea: integration over the loop momentum k must yield 
a finite result: no IR and UV divergences

ࢻ
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Singlet amplitude

Non-singlet amplitudes

PIECE OF TERMINOLOGY: Singlet and non-singlet amplitudes:

Such terminology is wide-spread but not altogether correct:
For instance, F2 and flavour singlet g1

S are referred as non-singlets
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To regulate IR 
divergences, we
Impose 
requirements        

0when  2 k

No physical reasons to 
introduce IR cut-offs

now the upper blobs are within the Perturbative QCD domain      

IR singularities are cut out     
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Regulation of IR divergences     



Born approximation     
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Radiative corrections are absent, so blob         contains 
non-perturbative contributions only     T



Beyond the Born approximation     
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Remark on gauge invariance     
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kGauge invariance is 
broken when intermediate 

partons are off-shell

However, typically the violation
is  proportional to                              
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Gauge invariance is restored at small x and small z in Born approximation 
Accounting for logarithmic rad corrections does not violate the invariance

This is also the applicability region for KT  - factorization: small x and 
accounting for logarithmic contributions                
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T

Perturbative
blob

Non-perturbative
blob

Adding more virtual partons leads to the convolutions without IR and UV 
divergences and where pert and non-pert contributions are in different blobs

this construction is a QCD 
factorization but it differs 

from KT - and collinear 
factorizations 

We call it
BASIC FACTORIZATION

Integration in 
collinear 

factorization

integrations in 
KT-factorization

New 
integration 
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Ultraviolet stability 

T

at large k, each propagator    

k

invariant 
energy 
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Suppression of UV divergences beyond Born approximation:
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Applying Optical theorem, we arrive at basic factorization for 
DIS structure functions:
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with totally unintegrated singlet and non-singlet parton distributions     

invariant energy    of the 
lowest blob
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Basic 
factorization

Approximation:

Reduction to KT-factorization:

integration over       should be 
performed without dealing with
which is impossible to be done exactly:
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w ࢻ	ࢼ ≪ ࢑૛⟘ Sense: virtualities of intermediate 
partons are generated by their 
transverse momenta
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KT-factorization
unintegrated  parton distribution
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Reduction of kT – factorization to collinear factorization
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Assumption:

any peaked form 
with sharp maximum

Integrated parton distribution
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intrinsic factorization scale
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Integration runs in vicinity of maximumintrinsic factorization scale

Intrinsic scale has the physical meaning: it is maximum of  parton
distribution in KT –factorization and this maximum is associated with 
non-perturbative physics entirely:

The sharper the maximum is, the better is accuracy of the 
transition from KT to collinear factorization
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More involved picture is possible: several maximums
The maximums can have different heights 
and widths
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This form of collinear factorization looks totally incompatible with the 
conventional form where
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If several maximums, then:



Collinear factorization:KT-factorization To apply Pert 
QCD

 k
~r

22
rik 
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We obtain collinear factorization through the reduction of KT-factorization 
The lower blob was and is totally non-perturbative
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

Mix of non-pert and pert
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Perturbative
evolution of       
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arriving at conventional scenario of collinear factorization  

can have arbitrary value 
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mix of Pert and 
Non-pert 

contributions

First, arbitrary factorization scale          is chosen 
Then, rad corr are distributed between two blobs 

Conventional approach:   



In conventional approach the parton
distributions have much more 
complicated structure 
and
collinear factorization is regarded as 
unrelated to KT-factorization    

often associated with 
staring point of 

evolution2Q
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Restrictions  on fits for parton distribution
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At small k2
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General structure of fits in kT -factorization 
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Simplest:

Sharp maximums in kT

This form of the fits has recently been used by 
Grinyuk-Jung-Lykasov-Lipatov-Zotov
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Typical structure of DGLAP-fits for initial parton densities:   

Restrictions on DGLAP fits in collinear factorization   

normalization singular factor two regular 
terms

0,,,, dcbaN

UV-stability of Compton amplitude 
In basic factorization   

No singular factors in gq    ,
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ࢇି Mellin transform   
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Necessity to use singular factors in DGLAP
When non-singular fits are used, the DGLAP structure functions grow too 
slow, eventually becoming the very well-known DGLAP small-x asymptotics
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It grows not fast enough. In order to get a faster growth, they 
introduce the singular factors These factors change the DGLAP small-
x asymptotics for the Regge asymptotics

we suppress the use of singular factors  but the fast growth of  the 
structure functions at small x is mandatory

intercept



WAY OUT 
Total resummation of leading logs of x automatically leads to the 
Regge asymptotics When the resummation is accounted for, the 
singular factors can be dropped 
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Asymptotic scaling

WARNING 
If a parton distribution needs singular factor to match exp data,
it means that important log contributions are not accounted for
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Situation for the singlets is even worse



normalization

Small-x 
asymptotics interpolation 

term

One more look at the  DGLAP-fits 

asymptotics
for x->1

Dropped when logs of 
x are resummed

Dropped when logs of (1-x) 
are resummed

May become 
unnecessary when 
logs of both x  and    
(1-x) are resummed
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Therefore, the fits can be  simplified down to Normalizations 



CONCLUSION       

We obtained a new, more general kind of factorization. 
We call it Basic QCD Factorization

IR and UV stability of the convolutions in Basic Factorization allowed us to 
impose restrictions on fits for parton distributions

Basic factorization can be reduced first to KT- and then to collinear 
factorizations

Using the relations between  Basic factorization and KT – and Collinear 
Factorizations, we obtain the following restrictions on the fits for initial 
parton distributions:

Fits in KT –factorization should include two terms, each with factor ሺ࢑૛⟘)a, 
with different exponents These factors are multiplied by functions with 
peaked dependence on ࢑૛⟘

Fits used in DGLAP in collinear factorization should not involve singular 
factors x-a


