

CMS results on multi-jet correlations

Grigory Safronov (ITEP, Moscow)

for the CMS Collaboration

Outline

- Introduction
- CMS detector
- ✓ Datasets
- Measurements
 - → Integrated mini-jet cross-section
 - → Inclusive jet production
 - → Production of jets with large rapidity separation

✓ Summary

Introduction

Physics overview

Integrated mini-jet cross-section

Low p_T (> 1 GeV); probe for pQCD to NP QCD transition as implemented in MC models

Inclusive forward jet cross-section

pQCD benchmark measurement covering large phase space; an access to $x_1 \ll x_2$

Jets with large rapidity separation

Probes for effects beyond the DGLAP resummation, BFKL

Forward-central dijet production cross-section

Sensitivity to $x_1 \ll x_2$, small-x PDFs

Mueller-Navelet dijet decorrelations

Higher order pQCD contributions at large rapidity intervals

CMS detector

Hadronic Forward (HF) calorimeter, 2.9< $|\eta|$ <5.2

- Steel absorber
- Radiation-hard quartz fibers, Cherenkov light detection
- "Long" and "short" segments allow to distinguish between EM and HAD components of hadronic jet

Datasets

LHC pp runs: ~30 fb⁻¹ collected in 2010 - 2013

- High luminosity was provided by huge bunch intensity
- Huge pileup (PU): up to 20

Pileup is a problem for forward jet or low-p_T measurements

- Jet primary vertex tagging is not possible in forward region

Analyses presented here use 2010 and 2012 data taken at low pileup

- 7 TeV 2010: <PU> ~ 2.2, I = 44.2pb⁻¹
- 8 TeV, summer 2012: 2 runs <PU> \sim 4, I = 5.8 pb⁻¹
- 8 TeV, summer 2012: common CMS + TOTEM run, <PU> = 0.054, I = 45 μ b⁻¹

Measurements

Diffraction 2014 6

Mini-jet cross-section (I)

Based on Phys. Rev. D86(2012) 117501 (A. Grebenyuk, F. Hautmann, H.Jung, P. Katsas, A. Knutsson)

Total $2\rightarrow 2$ cross-section is divergent towards low $p_{T,min}$ (integration threshold, $p_T > p_{T,min}$) and eventually becomes larger than total inelastic cross-section

At LHC this happens around p_{T,min} ~ 5 GeV

In theory 2→2 cross-section needs to be tamed

Pythia, phenomenological parameters:

- Regularisation factor for the cross-section
- Multi-parton interactions

Diffraction 2014 7

Mini-jet cross-section (II)

TOTEM experiment:

T2 telescope

- tracking in the region $5.3 < l\eta l < 6.5$

Common trigger with the CMS - at least one track in T2

- 91-96 (%) of total pp inelastic x-sec captured

Common CMS + TOTEM data-taking

- Run with very low pileup at \sqrt{s} = 8 TeV (2012), <PU>=0.054, I=45 µb⁻¹

Diffraction 2014

Mini-jet cross-section (III)

Events are triggered by TOTEM T2:

- At least one track $p_T > 40$ MeV, $5.3 < |\eta| < 6.5$

Track-jet selection:

- Charged component, anti-k_T R=0.5, p_T > 1 GeV, $|\eta|$ < 1.9

Event yield as a function of integration threshold pT,min is measured

- And divided by the total number of events

Observations:

- → Taming of the cross-section is visible
- → Large difference between the models
- → Tune sensitivity
- → Pythia and Herwig do not describe the data
- Cosmic ray models: EPOS gives the best desription; QGSJet fails

Inclusive jet cross-section

CMS measurements are performed within 20 \leq p_T \leq 2000 (GeV) and lyl < 4.7

- Combined low-PU runs (Summer 12, <PU> \sim 4, I = 5.8 pb⁻¹) and full 2012 dataset (I = 10.7 fb⁻¹)

Data is well-described by NLO calculations with NP corrections

Diffraction 2014 10

Forward jet cross-section

Closer look at forward jets:

- $-3.2 < |\eta| < 4.7$
- $-21 < p_T < 80 (GeV)$

Experimental uncertainties:

- Jet energy scale (JES): < 45%

- Unfolding: 3-6%

- Luminosity: 4%

All predictions agree with data within the uncertainties

Inclusive jet production is well-described by NLO⊗NP predictions over the wide range of p_⊤ and rapidity

Diffraction 2014

Jets with large rapidity separation

pQCD resummation → parton showers (PS)

DGLAP PS regime:

$$\sqrt{s} \sim p_{\rm T} > \Lambda_{\rm QCD}$$

Strong ordering of emissions in pT

Measure high-p_⊤ leading jets

BFKL PS regime (QCD high energy limit):

$$\sqrt{s} \gg p_T > \Lambda_{QCD}$$

Strong ordering of emissions in y

Random walk of emissions in p_T

Measure low- p_T jets with large rapidity span (Δy) \rightarrow approach BFKL limit and open the phase space for multiple emissions with similar p_T

BFKL prediction:

$$\hat{\sigma} \sim \hat{s}^A \sim e^{A\Delta y}, A > 1$$

Search for beyond-DGLAP effects in low-p_T PS with large rapidity span

"low- p_T " means as low as allowed by the trigger and reconstruction techniques ($\sim 30~\text{GeV}$)

13

Forward-Central jet production (I)

2010 pp runs (low PU), 3.2 pb⁻¹

Measure simultaneous production of forward and central jets

- $p_T > 35 \text{ GeV}$
- central : $|\eta| < 2.8$
- forward: $3.2 < |\eta| < 4.7$
- p_T ordering of jets in each region

Absolute differential cross-section

- Leading exp. uncertainty: JES - up to 50%

Cross-section in p_T bins for intermediate jets

Good agreement of MC predictions with data

Diffraction 2014

Forward-Central jet production (II)

Cross-section differential in forward-central azimuthal angle difference, Δφ - In bins of rapidity separation

Herwig and Pythia predictions agree with data within the uncertainty

Diffraction 2014 14

Mueller-Navelet jet production

Mueller-Navelet (MN) jets – jet pair with similar p_T ($k_1 \sim k_2$) and large rapidity separation

2010 data (low PU), 5 pb⁻¹

Selections:

- Require single primary vertex (~1/3 of 2010 data)
- Calorimeter jet p_T > 35 GeV, lηl < 4.7
- Rapidity separation coverage of the measurement: Δy < 9.4
 - → Combination of inclusive and forward-backward jet triggers

Systematic uncertainties:

- Dominated by JES and unfolding uncertainties, small compared to absolute cross-section measurements
- Pileup influence is reduced (or even removed) by single vertex requirement

Dijet production ratio

Direct probe for higher order radiation:

$$R^{\rm incl} = \sigma^{\rm incl}/\sigma^{\rm excl}$$

"exclusive" - events with exactly two jets above the threshold

Significant spread between models:

- Best description of the ratio is given by PYTHIA6 and PYTHIA8
- Herwig++ shows larger growth with increase of rapidity separation
- BFKL inspired models CASCADE and HEJ overestimate the data

MN azimuthal decorrelations

Measurement at D0 in 1996

[10.1103/PhysRevLett.77.595]

 $\Delta \eta < 6.0$, $E_T > 50$ (20) GeV LL BFKL overestimates decorrelation **HERWIG6 gives the best description**

CMS measurement

Extends to $\Delta y < 9.4$ Symmetric $p_T > 35$ GeV

- → Azimuthal angle separation Δφ in Δy bins
- → Average cosines C₁, C₂, C₃ as a function of Δy
- → Ratios C₂/C₁, C₃/C₂

Δφ shapes

In 2 \rightarrow 2 scattering jets are back-to-back and $\Delta \varphi = \pi$

Decorrelation is due to higher order radiation

PYTHIA6 and PYTHIA8 show too strong decorrelation

SHERPA underestimates decorrelation

HERWIG++ gives the best description

Average cosines (I)

First 3 coefficients of Fourrier transform of $\Delta \phi$ distribution

Equal to average cosines: $C_n = \langle \cos(n(\pi - \Delta \phi)) \rangle$

BFKL NLL predictions at parton level provided by:

B. Ducloué, L. Szymanowski, S. Wallon, [10.1007/JHEP05(2013)096]

- Later calculation is available which shows better agreement (arXiv:1309.3229)

Average cosines (II)

CMS Preliminary, $\sqrt{s} = 7$ TeV, Ldt = 5 pb⁻¹

Correlation in SHERPA is stronger than in data

PYTHIA and HERWIG describe the data well

Mueller-Navelet dijets

P_v > 35 GeV, |y| < 4.7

CMS Preliminary, \sqrt{s} = 7 TeV, Ldt = 5 pb 1

Sherpa 1.4

Mueller-Navelet dijets P₊ > 35 GeV, |y| < 4.7

BFKL NLL+

^((0 0 1.2

DATA

Cascade 2

C3

Cosine ratios

Ratios of cosines as proposed in **10.1016/j.nuclphysb.2007.03.050** (A. Sabio Vera, F. Schwennsen)
- C₂/C₁, C₃/C₂

Not conclusive for PYTHIA6, 8 and HERWIG++

SHERPA overestimates C_2/C_1 , Consistent with C_3/C_2

NLL BFKL is consistent with ratios

CMS-PAS-FSQ-12-002

MN azimuthal decorrelations, summary

- ✓ MN azimuthal decorrelations were measured up to $\Delta y = 9.4$
- Diversity in MC predictions:
 - None of MC models describe all observables
 - Best combined description among MC is given by HERWIG++
 - ✓ PYTHIA6, PYTHIA8 and SHERPA show worse agreement
- Analytic predictions: Data is well-described by NLL BFKL calculations from two groups of authors (not on CMS plots yet)

10.1103/PhysRevLett.112.082003, arxiv:1309.3229 (B.Ducloe, L. Szymanowski, S. Wallon)

arXiv:1407:8431

(F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa)

SUMMARY

Minijet cross-section

Most of MC fail to describe the data. Best description is given by cosmic ray model EPOS

Inclusive jet production

Data is well described by NLO⊗NP over the wide p_T and rapidity range

Forward-central jets

PYTHIA and HERWIG provide good description of the data

Mueller-Navelet jets

Inclusive to exclusive dijet production ratios

- PYTHIA6 and PYTHIA8 predictions are within the experimental uncertainties
- HERWIG++, HEJ, CASCADE predict too strong parton radiation

Mueller-Navelet jets angular decorrelations

- No DGLAP-based MC prediction describing all observables
- Analytic NLL BFKL predictions provide better description of the data

BACKUP

Diffraction 2014 24

Datasets (I)

LHC pp runs: ~30 fb⁻¹ collected in 2010 - 2013

pp data at 7, 8 and 2.76 TeV

CMS Integrated Luminosity, pp

Jet reconstruction

Several jet reconstruction techniques

- → Calorimeter jets
- → "Jet Plus Track" jets
- → Particle Flow jets

Anti-k_T, R=0.5 or 0.7 clustering algorithm

MC- and data-driven Jet Energy Scale (JES) calibration techniques

- → Uncertainty of calibration < 5% for high-p jets
- → Uncertainty for low-_{pT} jets can be as high as 10%

JES uncertainty – leading source of experimental uncertainty

Jet triggers

Jet triggers are based on uncorrected calorimeter energy deposits

Lowest available trigger threshold pT > 15 GeV

- Turn-on point depends on η and type of the jet
- → 99% efficiency in full acceptance for calojets with pT > 35 GeV

Presented analyses use triggers requiring one or two jets with uncorrected ET > 15 GeV

Dijet production ratios

Measurement of dijet production cross-section ratios as a function of rapidity separation

$$R^{\rm incl} = \sigma^{\rm incl}/\sigma^{\rm excl}$$

σexcl

 veto on additional jets above the threshold in the event

 $\sigma^{
m incl}$

- inclusive selection, all pairwise combinations

Properties of observables:

- Ratio emphasizes higher orders enhanced by (α_SΔy)ⁿ in the BFKL limit
- Remove PDF contributions
- Experimental systematic uncertainties are decreased