Exclusive photoproduction of quarkonium at the LHC energies within the color dipole approach

Maria Beatriz Gay Ducati

Universidade Federal do Rio Grande do Sul. Instituto de Física. Grupo de Fenomenologia de Partículas de Altas Energias. www.if.ufrgs.br/gfpae

Outlook

- Introduction
 - \rightarrow Pomeron exchange
 - \rightarrow Dipole formalism
 - \rightarrow Amplitude calculation
 - \rightarrow Node effect

• Coherent and incoherent mesons production in PbPb and pp collisions

- \rightarrow Differential cross section calculation
- \rightarrow Vector mesons wave function
- \rightarrow Dipole cross section model
- Results for $J/\Psi, \Psi'$ and Υ production
 - ightarrow Coherent and incoherent rapidity distribution of J/Ψ and Ψ'
 - $\rightarrow\,$ Rapidity distribution of Υ production
- Summary

• An outstanding feature of diffractive photoproduction of mesons at the high energy regime is the possibility to investigate the Pomeron exchange

Pomeron \rightarrow two gluons (vacuum quantum numbers)

- Large mass of quarkonium states
- ightarrow perturbative scale
- Amplitude perturbative calculable
- Even at photoproduction region $Q^2
 ightarrow 0$
- \rightarrow Vector meson photoproduction investigation
- ightarrow Process sensitive to the effect produced by the strong field of the nuclei
- \rightarrow Measurements at LHC energies can provide useful insights to assess these effects

Node Effect

• The diffractive production of the 2S radially excited vector mesons, like $\Psi(2S)$, is specially interesting due to the node effect;

Node Effect: Strong cancellation of dipole size contributions to the production amplitude from the region above and below the node position in the 2S radial wavefunction.

→ This is the origin of the large suppression of the photoproduction of radially excited vector mesons 2S versus 1S Maria Beatriz Gay Ducati (UFRGS) GFPAE Diffraction 2014 5 / 38 An important class of diffractive reactions we can use a perturbative treatment is the vector meson production in DDIS: $\gamma^* p \rightarrow Vp$. Two gluons exchange diagrams that contribute to the amplitude of the vector meson leptoproduction are shown in the figure below:

In the color dipole formalism, the amplitude can be written as:

$$A \propto \Psi^{\gamma} \otimes \sigma^{q\bar{q}} \otimes \Psi^{V}$$
, (1)

Diffractive production of meson at t = 0

$$A_{T}(W^{2}, t = 0) = -4\pi^{2} i\alpha_{s} W^{2} \int \frac{dk^{2}}{k^{4}} \left(\frac{1}{l^{2} - m_{c}^{2}} - \frac{1}{l^{\prime 2} - m_{c}^{2}}\right) \times f(x, k^{2}) e_{c} g_{\Psi} M_{\Psi}$$
(2)

 $l(l') \rightarrow$ quark (antiquark) momentum $k \rightarrow$ gluons transverse momentum $f(x, k^2) \rightarrow$ unintegrated gluons distribution.

The cross section is given by:

$$\frac{d\sigma_T^{\gamma^{(*)}p \to \Psi p}}{dt} = \frac{1}{16\pi W^4} |A_T|^2 .$$
 (3)

The constant g_{Ψ} can be determined from the decay $\Gamma^{\Psi}_{e^+e^-}$: $e_c^2 g_{\Psi}^2 = \frac{\Gamma^{\Psi}_{e^+e^-} M_{\Psi}}{12\alpha_{em}}$

In the $\ln \tilde{Q}^2$ dominant approach, the amplitude is written as:

$$A_{T} \simeq 2\pi^{2} i e_{c} g_{\Psi} M_{\Psi} \alpha_{s}(\tilde{Q}^{2}) W^{2} \frac{x g(x, \tilde{Q}^{2})}{\tilde{Q}^{4}}$$

$$\tag{4}$$

and the transverse cross section is:

$$\frac{d\sigma_T^{\gamma^{(*)}p\to\Psi p}}{dt}\bigg|_{t=0} = \frac{16\Gamma_{e^+e^-}^{\Psi}M_{\Psi}^3\pi^3}{3\alpha_{em}(Q^2 + M_{\Psi}^2)^4} \left[\alpha_s(\tilde{Q}^2)xg(x,\tilde{Q}^2)\right]^2 .$$
 (5)

 $\ln ilde{Q}^2$ approach ightarrow the amplitude is driven by two gluons exchange diagrams

 $xg(x, \tilde{Q}^2) \rightarrow g$ luons distribution

The complete differential cross section (T+L) in the ln $ilde{Q}^2$ dominant is:

$$\frac{d\sigma^{\gamma^{(*)}p \to Vp}}{dt} \bigg|_{t=0} = \frac{16\Gamma_{e^+e^-}^V M_{\Psi}^3 \pi^3}{3\alpha_{em}(Q^2 + M_V^2)^4} \left[\alpha_s(\tilde{Q}^2) xg(x, \tilde{Q}^2)\right]^2 \left(1 + \frac{Q^2}{M_V^2}\right)$$

 $xg(x, ilde{Q}^2)
ightarrow$ grows in small- x
ightarrow undetermined

Dipole formalism ightarrow can restrict $xg(x, ilde{Q}^2)
ightarrow$ includes gluon saturation

• In the LHC energy domain hadrons and photons can be considered as color dipoles in the light cone representation.

• The scattering process is characterized by the color dipole cross section representing the interaction of those color dipoles with the target.

 $r \rightarrow$ dipole separation.

 $z(1-z) \rightarrow$ quark(antiquark) momentum fraction.

b
ightarrow impact parameter.

Coherent process:

 $AA \rightarrow AA + J/\Psi(\Psi').$

⇒ nuclei remain intact.

Incoherent process:

 $AA \rightarrow X + J/\Psi(\Psi').$

 \Rightarrow nuclei are fragmented.

Coherent cross section:

$$\sigma^{cohe}(\gamma A \to J/\Psi A) = \int d^2b \left\{ \left| \int d^2r \int dz \Psi_V^*(r, z) \right. \\ \left. \left(1 - \exp\left[-\frac{1}{2} \sigma_{dip}(x, r) T_A(b) \right] \right) \Psi_{\gamma^*}(r, z, Q^2) \right| \right\}$$

 $\sigma_{dip} \rightarrow$ dipole cross section.

 $\Psi_V \rightarrow$ vector meson wave function.

 $\Psi_{\gamma} \rightarrow$ photon wave function.

 ${\cal T}_{\cal A}(b)=\int dz
ho_{\cal A}(b,z),\,
ho_{\cal A}(b,z)
ightarrow$ nuclear thickness function.

 $b \rightarrow$ impact parameter.

Incoherent case:

$$\sigma^{inc}(\gamma A
ightarrow J/\Psi X) = rac{|Im \mathcal{A}(s,t=0)|^2}{16 \pi B_V}$$

where

$$|Im\mathcal{A}(s,t=0)|^{2} = \int d^{2}b T_{A}(b) \left[|\int d^{2}r \int dz \Psi_{V}^{*}(r,z)\sigma_{dip} \right]$$
$$\times \exp\left[-\frac{1}{2}\sigma_{dip}T_{A}(b) \right] \Psi_{\gamma^{*}}(r,z,Q^{2})|^{2} \right]$$

$$B_V = 0.6 imes \left(rac{14}{(Q^2 + M_V^2)^{0.26}} + 1
ight) o$$
 diffractive slope parameter, $\gamma^* p o \Psi p$

Rapidity distribution of mesons production

$$\frac{d\sigma}{dy}(AA \to AAV) = \sigma_{\gamma A} \otimes \frac{dN_{\gamma}(\omega)}{d\omega}$$
(6)

Photon Flux:

$$\frac{dN_{\gamma}(\omega)}{d\omega} = \frac{2Z^2\alpha_{em}}{\pi\omega} \left[\xi_R^{AA} \kappa_0(\xi_R^{AA}) \kappa_1(\xi_R^{AA}) \frac{(\xi_R^{AA})^2}{2} \kappa_1^2(\xi_R^{AA}) - \kappa_0^2(\xi_R^{AA})\right].$$
(7)

$$\begin{split} &\omega \rightarrow \text{ photon energy} \\ &\mathcal{K}_0(\xi), \mathcal{K}_1(\xi) \rightarrow \text{ modified Bessel functions.} \\ &\xi_R^{AA} = 2 R_A \omega / \gamma_L, \ R_A \rightarrow \text{ nuclei radius.} \end{split}$$

For the dipole cross section, we use the Color Glass Condensate model (CGC) (Phys. Lett. B 590, 199 (2004)):

$$\begin{aligned} \sigma_{dip} &= 2\pi R^2 N_0 \left(\frac{rQ_s}{2}\right)^{2\{\gamma_s + [\ln(2/rQ_s)/\kappa\lambda \ln(1/x)]\}} , \ rQ_s \le 2 \\ &= 2\pi R^2 \{1 - \exp\left[-a\ln^2\left(brQ_s\right)\right]\} , \ rQ_s > 2 \end{aligned}$$

 $Q_s = (x_0/x)^{\lambda/2} \text{GeV} \rightarrow \text{saturation scale}$ $\gamma_s = 0.63, \kappa = 9.9 \rightarrow \text{fixed to their LO BFKL values}$ $R, x_0, \lambda \rightarrow \text{free parameters of the fit}$ The light cone wave functions of the meson are written as:

$$\Psi_{h,\bar{h}}^{V,L}(r,z) = \sqrt{\frac{N_c}{4\pi}} \delta_{h,-\bar{h}} \frac{1}{M_V z(1-z)} \times [z(1-z)M_V^2 + \delta(m_f^2 - \nabla_r^2)]\phi_L(r,z)$$

 $\nabla_r^2 = (1/r)\partial_r + \partial_r^2$

$$\Psi_{h,\bar{h}}^{V,T(\gamma=\pm)}(r,z) = \pm \sqrt{\frac{N_c}{4\pi}} \frac{\sqrt{2}}{z(1-z)} \{ie^{\pm i\theta_r} [z\delta_{h\pm,\bar{h}\mp} - (1-z)\delta_{h\mp,\bar{h}\pm}]\partial_r + m_f \delta_{h\pm,\bar{h}\mp} \}\phi_T(r,z)$$

Light cone wave functions

 $\Psi(1S)$:

$$\phi_{\lambda}(r,z) = N_{\lambda} \left[4z(1-z)\sqrt{2\pi R^2} \exp\left(-\frac{m_f^2 R^2}{8z(1-z)}\right) \exp\left(-\frac{2z(1-z)r^2}{R^2}\right) \times \exp\left(\frac{m_f^2 R^2}{2}\right) \right]$$

 $\Psi(2S)$:

$$\phi_{2S}(r,z) = \phi_{1S}(r,z)[1 + \alpha_{2S}g_{2S}(r,z)]$$

$$g_{25}(r,z) = 2 - m_f^2 R_{25}^2 + \frac{m_f^2 R_{25}^2}{4z(1-z)} - \frac{4z(1-z)r^2}{R_{25}^2}$$

 \rightarrow Boosted Gaussian Wavefunction (BG)

Nuclear shadowing renormalizing the dipole cross section \rightarrow gluon density in nuclei at small Bjorken-x is expected to be supressed compared to a free nucleon due to interferences.

Ratio of the gluon density: $R_G(x, Q^2 = m_V^2/4)$

Small-x photon scatters off a large-x gluon or vice-versa.

 \rightarrow y = ±3: x large as 0.02

 \rightarrow y = 0: x = M_Ve^{±y} $\sqrt{S_{NN}}$ smaller than 10⁻³ for the nuclear gluon distribution.

Figure: The rapidity distribution of coherent $\Psi(1S)$ meson photoproduction at $\sqrt{s} = 2.76$ TeV in PbPb collisions at the LHC (Phys. Rev. C88, 014910 (2013)).

- $\sigma_{dip} \rightarrow R_G(x, Q^2)\sigma_{dip};$
- R_G Model 1 → higher nuclear shadowing;
- *R_G* Model 2 → small nuclear shadowing;
- R_G = 1: the ALICE data is overestimate by a factor 2 ;
- In the backward/forward rapidity case, the overestimation is already expected as a proper threshold factor for $x \rightarrow 1$ was not included in the present calculation.
- R_G Model 2 is preferred in this analysis.
- ALICE data: Phys. Lett. B718 (2013) 1273.

Rapidity	$R_G = 1$	R _G Model 1	<i>R_G</i> Model 2
<i>y</i> = 0	$d\sigma/dy = 4.95 mb$	$d\sigma/dy = 1.68 mb$	$d\sigma/dy = 2.27 mb$

Table: Results.

 \rightarrow The prediction using Model 2 for R_G describes the ALICE data

 $\rightarrow R_G = 1$ - no shadowing

 \rightarrow R_G Model 1 - decreases 66% and R_G Model 2 - decreases 54% the rapidity distribution compared with $R_G = 1$ (for y = 0)

 $\rightarrow R_G$ is considered independent of the impact parameter

Figure: The rapidity distribution of coherent $\Psi(2S)$ meson photoproduction at $\sqrt{s} = 2.76$ TeV in PbPb collisions at the LHC (Phys. Rev. C88, 014910 (2013)).

- R_{G} Model $1 \rightarrow$ higher nuclear shadowing;
- R_G Model 2 → small nuclear shadowing;
- The theoretical curves follow the same notation as in the $\Psi(1S)$ case;

Rapidity	$R_G = 1$	R _G Model 1	<i>R_G</i> Model 2
<i>y</i> = 0	$d\sigma/dy = 0.71 mb$	$d\sigma/dy = 0.24mb$	$d\sigma/dy = 0.33 mb$

Table: Results.

$$\rightarrow R_G = 1$$
 - no shadowing

ightarrow The theoretical predictions follow the general trend as for the 1S state

 \rightarrow This is the first estimate in the literature for the photoproduction of 2S state in nucleus-nucleus collisions

At central rapidities, the presented predictions give the ratio

$$R_{\psi}^{y=0} = rac{d\sigma_{\psi(2S)}}{dy} / rac{d\sigma_{\psi(1S)}}{dy} (y=0) = 0.14$$

 \rightarrow in the case $R_G = 1$ with is consistent with the ratio measured in CDF (Phys. Rev. Lett. 102, 242001 (2009)): 0.14 \pm 0.05 (exclusive charmonium production at 1.96 TeV in $p\bar{p}$ collisions)

 \rightarrow a similar ratio is obtained using Model 1 and Model 2 at central rapidity as well

\rightarrow the ratio is not sensitive to shadowing

Prediction for the LHC run in PbPb mode at 5.5 TeV:

$$\rightarrow \Psi(2S)$$
 cross section ($R_G = 1$):

Coherent:

$$rac{d\sigma_{coh}}{dy}(y=0)=1.27~mb$$

Incoherent:

$$rac{d\sigma_{inc}}{dy}(y=0)=0.27 \ mb$$

Figure: The rapidity distribution of incoherent $\Psi(1S)$ (solid line) and $\Psi(2S)$ (dashed line) meson photoproduction at $\sqrt{s} = 2.76$ TeV in PbPb collisions at the LHC (Phys. Rev. C88, 014910 (2013)).

- Data from ALICE collaboration ;
- The result fairly describes the recent ALICE data for the incoherent cross section at mid-rapidity;
- In both cases we only computed the case for $R_G = 1;$
- ALICE data: Eur. Phys. J.C (2013) 73: 2617.

Results

$\Psi(1S)$:

$$rac{d\sigma_{
m inc}}{dy}(y=0)=1.1~mb$$

$$rac{d\sigma_{inc}^{
m ALICE}}{dy}(-0.9 < y < 0.9) = 0.98 \pm 0.25 ~mb$$

ightarrow the prediction good describes the recent ALICE data

 $\Psi(2S)$:

$$rac{d\sigma_{
m inc}}{dy}=0.16~mb$$

 \rightarrow For the incoherent case, the gluon shadowing is weaker than the coherent case - 20% reduction compared to $R_G=1$

Figure: The rapidity distribution of Υ photoproduction at $\sqrt{s} = 2.76 \text{ TeV}$.

- Predictions to LHC 2.76 TEV, PbPb ;
- The models CGC and GBW were considered to the dipole cross section;
- BG wavefunction was used;
- y = 0: $d\sigma/dy \approx 9\mu b \rightarrow$ the two models have approximately equal results in the central rapidity;
- In the forward/backward region, the models presented slightly different results.

The rapidity distribution for quarkonium photoproduction is given by

$$\frac{d\sigma}{dy}(pp \to p \otimes \psi \otimes p) = S_{gap}^{2} \left[\omega \frac{dN_{\gamma}}{d\omega} \sigma(\gamma p \to \psi(nS) + p) + (y \to -y) \right],$$
(8)

where

$$\frac{dN_{\gamma}(\omega)}{d\omega} = \frac{\alpha_{em}}{2\pi\omega} \left[1 + \left(1 - \frac{2\omega}{\sqrt{s}}\right)^2 \right] \times \left(\ln \xi - \frac{11}{6} + \frac{3}{\xi} - \frac{3}{2\xi^2} + \frac{1}{3\xi^3} \right), \quad (9)$$

 $S^2_{gap}=$ 0.8 \rightarrow represents the absorptive corrections due to spectator interactions between the two hadrons

$$\sigma_{\gamma^* p \to V p}(s, Q^2) = \frac{1}{16\pi B_V} \left| \mathcal{A}(x, Q^2, \Delta = 0) \right|^2,$$
(10)

where the amplitude is

$$\mathcal{A}(x,Q^2,\Delta) = \sum_{h,\bar{h}} \int dz \, d^2 \Psi^{\gamma}_{h,\bar{h}} \, \mathcal{A}_{q\bar{q}}(x,r,\Delta) \Psi^{V*}_{h,\bar{h}} \,, \tag{11}$$

$$\begin{split} B_V &\rightarrow \text{diffractive slope parameter} \\ B_V(W_{\gamma p}) &= b_{el}^V + 2\alpha' \log \left(\frac{W_{\gamma p}}{W_0}\right)^2 \\ \alpha' &= 0.25 \text{ GeV}^{-2} \text{ and } W_0 = 95 \text{ GeV} \\ W_{\gamma p} &= 90 \text{ GeV} \\ b_{el}^{\psi(15)} &= 4.99 \pm 0.41 \text{ GeV}^{-2} \text{ and } b_{el}^{\psi(25)} = 4.31 \pm 0.73 \text{ GeV}^{-2} \end{split}$$

Figure: The rapidity distribution of $\Psi(15)$ photoproduction at $\sqrt{s} = 7 TeV$ (Phys. Rev. D 88, 017504, 2013).

- Predictions to LHC 7*TEV*, pp for forward region ;
- The model CGC was considered to the dipole cross section;
- The relative normalization and overall behavior on rapidity is quite well reproduced in forward regime;
- LHCb data (J. Phys. G 40, 045001, 2013);

Figure: The rapidity distribution of $\Psi(1S)$ and $\Psi(2S)$ photoproduction at $\sqrt{s} = 7 \text{ TeV}$ (Phys. Rev. D 88, 017504, 2013).

- Predictions to LHC 7*TEV*, pp, including mid-rapidity and backward regions ;
- The model CGC was considered to the dipole cross section;
- $\Psi(1S) \rightarrow y = 0$: $d\sigma/dy \approx 5.8 nb$;

•
$$\Psi(2S) \rightarrow y = 0$$
: $d\sigma/dy \approx 0.94$ nb.

This prediction:

$$\sigma_{
m
hop
ightarrow \psi(2S)(
ightarrow \mu^+ \mu^-)}(2.0 < \eta_{\mu^\pm} < 4.5) = 7.7$$
 pb

LHC measure (J. Phys. G 40, 045001, 2013):

$$\sigma_{
m pp
ightarrow \psi(2S)(
ightarrow \mu^+ \mu^-)}(2.0 < \eta_{\mu^\pm} < 4.5) = 7.8 \pm 1.6$$
 pb

This prediction:

$$[\psi(2S)/\psi(1S)]_{y=0} = 0.16$$

$$[\psi(2S)/\psi(1S)]_{2 < y < 4.5} = 0.18$$

LHCb determination (J. Phys. G 40, 045001, 2013):

$$[\psi(2S)/\psi(1S)](2.0 < \eta_{\mu^\pm} < 4.5) = 0.19 \pm 0.04$$

Figure: The rapidity distribution of Υ photoproduction at $\sqrt{s} = 7 \text{ TeV}$.

- Predictions for LHC 7 TEV, pp ;
- The models CGC and GBW were considered for the dipole cross section;

PbPb:

The rapidity distributions of coherent and incoherent production of mesons $\Psi(1S)$ and $\Psi(2S)$ were calculated in PbPb collisions using dipole formalism.

- The predictions using $R_{G} = 1$ are consistent with other predictions using the same formalism
- The option of small shadowing is preferred in data description whereas the usual $R_G = 1$ value overestimates the central rapidity cross section by a factor 2, for the coherent case
- The prediction for the state $\Psi(2S)$ photoproduction in PbPb collisions is the first presented in the literature
- The present theoretical approach describes ALICE data for the incoherent cross section
- The central rapidity data measured by the ALICE Collaboration for the rapidity distribution of the $\Psi(1S)$ state is crucial to constrain the nuclear gluon function
- Predictions for Υ photoproduction were presented.

pp:

The rapidity distributions of mesons $\Psi(1S)$ and $\Psi(2S)$ production were calculated in pp collisions using dipole formalism.

• The predictions for $\Psi(1S)$ rapidity distribution and total cros section are consistent with LHCb data

• The ratio $\Psi(2S)/\Psi(1S)$ is also consistent with LHCb determination in the forward region

• Our predictions are in agreement with the use of color dipole formalism and with the prediction from Starlight (Phys. Rev. Lett 92, 142003, 2004) and SuperChic (Eur. Phys, J C 65, 433, 2010)

• Predictions are done also for Υ photoproduction in pp collisions at LHC energies

Thank You!

 $\begin{aligned} a_{+} &= a_{0} + a_{3} \\ a_{-} &= a_{0} - a_{3} \\ \vec{a_{t}} &= (a_{1}, a_{2}) \\ a \cdot b &= \frac{1}{2}(a_{+}b_{-} + a_{-}b_{+}) - \vec{a_{t}} \cdot \vec{b_{t}} \\ p_{-} &= \frac{|\vec{p}|^{2} + m^{2}}{p_{+}} \rightarrow \text{momentum} \end{aligned}$