pp interaction at LHC energies and beyond

(A. K. Kohara, E. Ferreira, T. Kodama)

IF/UFRJ

International Workshop on Diffraction in High-Energy Physics - Diffraction-2014

10-16 September 2014 - Croatia

Outlook

Description of pp elastic scattering

b-space asymptotic behaviour

p-air cross sections (Glauber)

Conclusions

Elastic Scattering Amplitudes

pp differential cross section

A. Kendi Kohara, E. Ferreira and T. Kodama, Eur. Phys. J. C ,73, 2326 (2013).
 A. K. Kohara, E. Ferreira and T. Kodama, Phys. Rev. D 87, 054024 (2013).

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$

Real and imaginary amplitudes, K = R, I

Regge like term
$$T_K^N(s,t) = \alpha_K(s) \mathrm{e}^{-\beta_K(s)|t|} + \lambda_K(s) \Psi_K(\gamma_K(s),t)$$

$$\Psi_K(\gamma_K(s), t) = 2 e^{\gamma_K} \left[\frac{e^{-\gamma_K \sqrt{1 + a_0 |t|}}}{\sqrt{1 + a_0 |t|}} - e^{\gamma_K} \frac{e^{-\gamma_K \sqrt{4 + a_0 |t|}}}{\sqrt{4 + a_0 |t|}} \right]$$

^{*} H.G. Dosch, Phys. Lett. B 190, 177 (1987); H.G. Dosch, E. Ferreira, A. Kramer Phys. Rev. D 50, 1992 (1994).

Elastic Scattering Amplitudes

pp differential cross section

A. Kendi Kohara, E. Ferreira and T. Kodama, Eur. Phys. J. C ,73, 2326 (2013).
 A. K. Kohara, E. Ferreira and T. Kodama, Phys. Rev. D 87, 054024 (2013).

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$

Real and imaginary amplitudes, K = R, I

$$T_K^N(s,t) = \alpha_K(s) e^{-\beta_K(s)|t|} + \lambda_K(s) \Psi_K(\gamma_K(s),t)$$

$$\Psi_K(\gamma_K(s), t) = 2 e^{\gamma_K} \left[\frac{e^{-\gamma_K \sqrt{1 + a_0 |t|}}}{\sqrt{1 + a_0 |t|}} - e^{\gamma_K} \frac{e^{-\gamma_K \sqrt{4 + a_0 |t|}}}{\sqrt{4 + a_0 |t|}} \right]$$

with 4 parameters for each amplitude

Energy dependence of parameters

Parameters of imaginary part

Parameters of real part

quantities in forward scattering

$$\sigma(s) = 4\sqrt{\pi} (\hbar c)^2 (\alpha_I(s) + \lambda_I(s))$$

Total cross section

$$\rho(s) = \frac{T_R^N(s,t=0)}{T_I^N(s,t=0)} = \frac{\alpha_R(s) + \lambda_R(s)}{\alpha_I(s) + \lambda_I(s)}$$
 Real/Imaginary

$$B_K(s) = \frac{2}{T_K^N(s,t)} \frac{dT_K^N(s,t)}{dt} \Big|_{t=0}$$
 Real and Imaginary slopes
$$= \frac{1}{\alpha_K(s) + \lambda_K(s)} \Big[\alpha_K(s) \beta_K(s) + \frac{1}{8} \lambda_K(s) a_0 \Big(6 \gamma_K(s) + 7 \Big) \Big]$$

Real and imaginary amplitudes together determined the dip/bump structure of the data.

pp at 52 GeV (ISR-CERN) and pp at 7 TeV (TOTEM-CERN)

Predictions for LHC energies

8 TeV case

8 TeV amplitudes

14 TeV

BSW model

C. Bourrely, J.M. Myers, J.Soffer and T.T. Wu , *Phys. Rev.D* 85, 096009 (2012).

Large t behaviour

Large t behaviour

Tri-gluon exchange - DL

$$R_{ggg}(t) \equiv \pm 0.45 \ t^{-4} (1 - e^{-0.005|t|^4}) (1 - e^{-0.1|t|^2})$$

numbers of the model

		imaginar	y amplitu	de	real amplitude						
\sqrt{s}	σ	B_{I}	α_I	eta_I	ρ	B_R	λ_R	β_R			
TeV	${ m mb}$	${ m GeV^{-2}}$	${ m GeV^{-2}}$	GeV^{-2}		${ m GeV^{-2}}$	${ m GeV^{-2}}$	GeV^{-2}			
1.8	77.21	17.17	11.8898	3.7175	0.1427	24.63	3.7566	1.2304			
2.76	83.47	17.96	12.4689	3.8293	0.1431	26.08	4.0745	1.2959			
7	98.65	19.77	13.7298	4.0745	0.1415	29.65	4.7667	1.4599			
8	101.00	20.21	13.9107	4.1100	0.1411	30.21	4.8660	1.4858			
13	109.93	21.35	14.5685	4.2409	0.1392	32.35	5.2271	1.5852			
14	111.34	21.53	14.6689	4.26123	0.1389	32.68	5.2822	1.6011			

\sqrt{s}	Z_{I}	$Z_{R}(1)$	$Z_{R}(2)$	$ t _{\mathrm{dip}}$	$d\sigma/dt _{\rm dip}$	$ t _{\mathrm{peak}}$	$d\sigma/dt _{\rm peak}$	ratio	$\sigma_{ m inel}$	$\sigma_{ m el}$	$\sigma_{ m el}^I$	$\sigma^R_{ m el}$	$\sigma_{ m el}/\sigma$
${ m TeV}$	GeV^2	GeV^2	GeV^2	GeV^2	${\rm mb}/{\rm GeV^2}$	GeV^2	$\mathrm{mb}/\mathrm{GeV}^2$	\mathbf{R}	mb	${ m mb}$	${ m mb}$	${ m mb}$	
1.8	0.6250	0.2052	1.0464	0.6798	0.005832	0.8170	0.006627	1.1362	58.97	18.24	18.00	0.24	0.24
2.76	0.5723	0.1925	0.9788	0.6138	0.008248	0.7587	0.010080	1.2221	63.13	20.33	20.07	0.27	0.24
7	0.4757	0.1673	0.8445	0.4988	0.015339	0.6465	0.022841	1.4891	73.28	25.37	25.05	0.32	0.26
8	0.4635	0.1639	0.8267	0.4850	0.016571	0.6319	0.025466	1.5368	74.85	26.16	25.83	0.33	0.26
13	0.4225	0.1522	0.7654	0.4385	0.021558	0.5816	0.037378	1.7338	80.76	29.17	28.82	0.35	0.27
14	0.4166	0.1505	0.7565	0.4319	0.022397	0.5743	0.039593	1.7678	81.69	29.65	29.29	0.35	0.27

numbers of the model

INPUTS

		imaginar	y amplitu	de	real amplitude						
\sqrt{s}	σ	B_{I}	α_I	eta_I	ρ	B_R	λ_R	β_R			
TeV	mb	${ m GeV^{-2}}$	${ m GeV^{-2}}$	GeV^{-2}		${ m GeV^{-2}}$	${ m GeV^{-2}}$	${ m GeV^{-2}}$			
1.8	77.21	17.17	11.8898	3.7175	0.1427	24.63	3.7566	1.2304			
2.76	83.47	17.96	12.4689	3.8293	0.1431	26.08	4.0745	1.2959			
7	98.65	19.77	13.7298	4.0745	0.1415	29.65	4.7667	1.4599			
8	101.00	20.21	13.9107	4.1100	0.1411	30.21	4.8660	1.4858			
13	109.93	21.35	14.5685	4.2409	0.1392	32.35	5.2271	1.5852			
14	111.34	21.53	14.6689	4.26123	0.1389	32.68	5.2822	1.6011			

DERIVED QUANTITIES

\sqrt{s}	Z_{I}	$Z_{R}(1)$	$Z_{R}(2)$	$ t _{\mathrm{dip}}$	$d\sigma/dt _{\rm dip}$	$ t _{\mathrm{peak}}$	$d\sigma/dt _{\rm peak}$	ratio	$\sigma_{ m inel}$	$\sigma_{ m el}$	$\sigma_{ m el}^I$	$\sigma_{ m el}^R$	$\sigma_{ m el}/\sigma$
${ m TeV}$	GeV^2	GeV^2	GeV^2	GeV^2	${\rm mb}/{\rm GeV^2}$	GeV^2	$\mathrm{mb}/\mathrm{GeV}^2$	\mathbf{R}	mb	${ m mb}$	${ m mb}$	${ m mb}$	
1.8	0.6250	0.2052	1.0464	0.6798	0.005832	0.8170	0.006627	1.1362	58.97	18.24	18.00	0.24	0.24
2.76	0.5723	0.1925	0.9788	0.6138	0.008248	0.7587	0.010080	1.2221	63.13	20.33	20.07	0.27	0.24
7	0.4757	0.1673	0.8445	0.4988	0.015339	0.6465	0.022841	1.4891	73.28	25.37	25.05	0.32	0.26
8	0.4635	0.1639	0.8267	0.4850	0.016571	0.6319	0.025466	1.5368	74.85	26.16	25.83	0.33	0.26
13	0.4225	0.1522	0.7654	0.4385	0.021558	0.5816	0.037378	1.7338	80.76	29.17	28.82	0.35	0.27
14	0.4166	0.1505	0.7565	0.4319	0.022397	0.5743	0.039593	1.7678	81.69	29.65	29.29	0.35	0.27

energy dependence of the inputs in forward scattering

Forward differential cross section

$$\frac{d\sigma}{dt} = \pi(\hbar c)^2 \left\{ \left[\frac{\rho \sigma}{4\pi(\hbar c)^2} e^{B_R t/2} \right]^2 + \left[\frac{\sigma}{4\pi(\hbar c)^2} e^{B_I t/2} \right]^2 \right\}$$

$$\sigma(s) = 69.3286 + 12.6800 \log \sqrt{s} + 1.2273 \log^2 \sqrt{s}$$

$$B_I(s) = 15.7848 + 1.75795 \log \sqrt{s} + 0.149067 \log^2 \sqrt{s}$$

$$\rho(s) = \frac{3.528018 + 0.7856088 \log \sqrt{s}}{25.11358 + 4.59321 \log \sqrt{s} + 0.444594 \log^2 \sqrt{s}}$$

$$B_R(s) = 22.8365 + 2.86093 \log \sqrt{s} + 0.329886 \log^2 \sqrt{s}$$

Slopes of real and imaginary amplitudes

b-space (geometric space)

Fourier transform of the amplitudes

$$i\sqrt{\pi} \ (1-e^{i\chi(s,\vec{b})}) \ \equiv \widetilde{T}(s,\vec{b}) = \widetilde{T}_R(s,\vec{b}) + i\widetilde{T}_I(s,\vec{b})$$
 in eikonal formalism
$$\longrightarrow \chi(s,\vec{b}) = \chi_R(s,\vec{b}) + i\chi_I(s,\vec{b})$$

$$\widetilde{T}_K(s, \vec{b}) = \frac{\alpha_K}{2\beta_K} e^{-b^2/4\beta_K} + \lambda_K \widetilde{\psi}_K(s, b)$$

$$\widetilde{\psi}_K(s,b) = \frac{2e^{\gamma_K - \sqrt{\gamma_K^2 + b^2/a_0}}}{a_0\sqrt{\gamma_K^2 + b^2/a_0}} \left[1 - e^{\gamma_K - \sqrt{\gamma_K^2 + b^2/a_0}} \right]$$

b-space (geometric space)

Fourier transform of the amplitudes

$$i\sqrt{\pi} \ (1-e^{i\chi(s,\vec{b})}) \ \equiv \widetilde{T}(s,\vec{b}) = \widetilde{T}_R(s,\vec{b}) + i\widetilde{T}_I(s,\vec{b})$$
 in eikonal formalism
$$\longrightarrow \chi(s,\vec{b}) = \chi_R(s,\vec{b}) + i\chi_I(s,\vec{b})$$

$$\widetilde{T}_K(s, \vec{b}) = \frac{\alpha_K}{2\beta_K} e^{-b^2/4\beta_K} + \lambda_K \widetilde{\psi}_K(s, b)$$

Large b (Yukawa like)

$$\widetilde{\psi}_K(s,b) = \frac{2e^{\gamma_K - \sqrt{\gamma_K^2 + b^2/a_0}}}{a_0\sqrt{\gamma_K^2 + b^2/a_0}} \left[1 - e^{\gamma_K - \sqrt{\gamma_K^2 + b^2/a_0}} \right] \quad - \sim \frac{1}{b}e^{-b/b_0}$$

b-space (geometric space)

Fourier transform of the amplitudes

$$i\sqrt{\pi} \ (1-e^{i\chi(s,\vec{b})}) \ \equiv \widetilde{T}(s,\vec{b}) = \widetilde{T}_R(s,\vec{b}) + i\widetilde{T}_I(s,\vec{b})$$
 in eikonal formalism
$$\longrightarrow \chi(s,\vec{b}) = \chi_R(s,\vec{b}) + i\chi_I(s,\vec{b})$$

with

$$\widetilde{T}_K(s, \vec{b}) = \frac{\alpha_K}{2\beta_K} e^{-b^2/4\beta_K} + \lambda_K \widetilde{\psi}_K(s, b)$$

Large b (Yukawa like)

$$\widetilde{\psi}_K(s,b) = \frac{2e^{\gamma_K - \sqrt{\gamma_K^2 + b^2/a_0}}}{a_0\sqrt{\gamma_K^2 + b^2/a_0}} \left[1 - e^{\gamma_K - \sqrt{\gamma_K^2 + b^2/a_0}} \right] \sim \frac{1}{b} e^{-b/b_0}$$

unitarity conditions

$$\frac{\widetilde{T}_R^2}{\pi} \leq e^{-2\chi_I(s,\vec{b})} \leq \ 1 \qquad \text{or} \qquad 0 \leq \chi_I \leq -\frac{1}{2}\log(\widetilde{T}_R^2/\pi)$$

satisfied by our solutions

In this space the cross sections are written

$$\sigma_{\rm el}(s) = \frac{(\hbar c)^2}{\pi} \int d^2 \vec{b} \ |\widetilde{T}(s, \vec{b})|^2 \equiv \int d^2 \vec{b} \ \frac{d\widetilde{\sigma}_{\rm el}(s, \vec{b})}{d^2 \vec{b}}$$

$$\sigma(s) = \frac{2}{\sqrt{\pi}} (\hbar c)^2 \int d^2 \vec{b} \ \widetilde{T}_I(s, \vec{b}) \ \equiv \int d^2 \vec{b} \ \frac{d\widetilde{\sigma}_{\text{tot}}(s, \vec{b})}{d^2 \vec{b}}$$

$$\sigma_{\rm inel} = (\hbar c)^2 \int d^2 \vec{b} \left(\frac{2}{\sqrt{\pi}} \widetilde{T}_I(s, \vec{b}) - \frac{1}{\pi} |\widetilde{T}(s, \vec{b})|^2 \right) \equiv \int d^2 \vec{b} \, \frac{d\widetilde{\sigma}_{\rm inel}(s, \vec{b})}{d^2 \vec{b}}$$

differential cross sections in terms of eikonal functions

$$\frac{d\widetilde{\sigma}_{el}(s,\vec{b})}{d^2\vec{b}} = 1 - 2\cos\chi_R e^{-\chi_I} + e^{-2\chi_I}$$

$$\frac{d\widetilde{\sigma}(s,\vec{b})}{d^2\vec{b}} = 2\left(1 - \cos\chi_R e^{-\chi_I}\right)$$

$$\frac{d\widetilde{\sigma}_{\text{inel}}(s,\vec{b})}{d^2\vec{b}} = 1 - e^{-2\chi_I}$$

Monotonic behaviour of differential cross sections

From 50 to 500 GeV: same behaviour

B.Z. Kopeliovich, I.K. Potashnikova, B. Povh and E. Predazzi, Phys. Rev. Lett. 85, 507 (2000); ibd. Phys. Rev. D 63, 054001 (2001).

...and this regular behaviour continues to asymptotic energies

...and this regular behaviour continues to asymptotic energies

This property determines asymptotic behaviour

with a decreasing range

Observe a scaling variable

$$x = b/\sqrt{\sigma\left(\sqrt{s}\right)/2\pi}$$

For asymptotic energies proton scattering is different from a black disk

Dimensionless ratios for imaginary and real parts

Study of ratios: talk by P. V. Silva M. J. Menon, P. V. R. G. Silva, J. Phys. G: Nucl. Part. Phys. 40 (2013) 125001

COSMIC RAY MEASUREMENTS

using our pp input, calculate p-air cross sections

p-air cross sections measurements in EAS (extended air showers)

proton from cosmic ray

atom of atmosphere

...considering the nucleus composed by uncorrelated nucleons distributed according a wave function

Glauber framework

R. Engel and R. Ulrich , Internal Pierre Auger Note GAP-2012, March 2012

forward amplitudes for pp elastic scattering

$$\widehat{T}_{pp}(s,\vec{b}) = \widehat{T}_R(s,\vec{b}) + i\widehat{T}_I(s,\vec{b})$$

$$= \frac{\sigma_{pp}^{tot}}{4\pi(\hbar c)^2} \left[\frac{\rho}{B_R} e^{-\frac{b^2}{2B_R}} + i\frac{1}{B_I} e^{-\frac{b^2}{2B_I}} \right]$$

In terms of eikonal functions

S-matrix in b space

$$-i \ \widehat{T}_{pp}(s, \vec{b}) = 1 - e^{i\chi_{pp}(s, \vec{b})} \equiv \Gamma_{pp}(s, \vec{b})$$

Optical theorem

$$\sigma_{\rm pp}^{\rm tot}(s) = 2 (\hbar c)^2 \Re \int d^2 \vec{b} \Gamma_{\rm pp}(s, \vec{b})$$

Analogous optical theorem for p-Air

$$\sigma_{\rm pA}^{\rm tot}(s) = 2 (\hbar c)^2 \Re \int d^2 \vec{b} \Gamma_{\rm pA}(s, \vec{b})$$

Glauber method introduces the p-A amplitude for A independent nucleons

$$\Gamma_{\text{pA}}(s, \vec{b}, \vec{s}_1, ..., \vec{s}_A) = 1 - \prod_{i=1}^{A} \left[1 - \Gamma_{\text{pp}}(s, |\vec{b} - \vec{s}_j|) \right]$$

We want to compute the production cross section defined by

$$\sigma_{\mathrm{p-air}}^{\mathrm{prod}} = \sigma_{\mathrm{p-air}}^{\mathrm{tot}} - (\sigma_{\mathrm{p-air}}^{\mathrm{el}} + \sigma_{\mathrm{p-air}}^{\mathrm{q-el}})$$

with

$$\sigma_{\rm pA}^{\rm el} + \sigma_{\rm pA}^{\rm q-el} = (\hbar c)^2 \int d^2 \vec{b} \int \left| 1 - \prod_{j=1}^A \left[1 - \Gamma_{\rm pp}(s, |\vec{b} - \vec{s_j}|) \right] \right|^2 \prod_{k=1}^A \left(\rho_k(\vec{r_k}) d^3 \vec{r_k} \right)$$

Nuclear density

We also test the effects of the diffractive intermediate states according to the Good Walker framework (with a parameter λ) that modifies the p-air amplitude to

$$\Gamma_{\rm pA}(s, \vec{b}, \vec{s}_1, ..., \vec{s}_A) = 1 - \frac{1}{2} \prod_{j=1}^{A} \left[1 - (1+\lambda)\Gamma_{\rm pp}(\vec{b} - \vec{s}_j) \right] - \frac{1}{2} \prod_{j=1}^{A} \left[1 - (1-\lambda)\Gamma_{\rm pp}(\vec{b} - \vec{s}_j) \right]$$

From the energy dependences in our input we obtain the parametrization for p-air production cross section with powers of $\log \sqrt{s}$.

$$\sigma_{\text{p-air}}^{\text{prod}}(s) = 383.474 + 33.158 \log \sqrt{s} + 1.3363 \log^2 \sqrt{s}$$

Comparison with p-air cosmic ray measurements

pp inelastic cross section

p-air in b-space

p-air elastic scattering amplitude

$$-i\widehat{T}_{\mathrm{pA}}(\vec{b}) = 1 - e^{i\chi_{pA}} \simeq 1 - \left\langle \prod_{j=1}^{A} e^{i\chi_{pN_j}} \right\rangle = 1 - \left\langle \prod_{j=1}^{A} \left(1 + i\widehat{T}_{\mathrm{pN}}(\vec{b}) \right) \right\rangle$$

p-air distributions:

$$\frac{1}{2} \frac{d^2 \sigma_{pA}^{\rm tot}}{d^2 \vec{b}}(s, \vec{b}) = \left\langle 1 - \prod_{i=1}^A \left(1 - \frac{1}{2} \frac{d^2 \sigma_{pp}^{\rm tot}}{d^2 \vec{b_i}}(s, \vec{b} - \vec{b_i}) \right) \right\rangle$$

$$\frac{d^2 \sigma_{pA}^{\rm el}}{d^2 \vec{b}}(s, \vec{b}) \ = \left\langle \left[1 - \prod_{i=1}^A (1 - \frac{d^2 \sigma_{pp}^{\rm tot}}{d^2 \vec{b_i}}(s, \vec{b} - \vec{b_i})) \right]^2 \right\rangle$$

p-air cross section predictions

Comparison between p-air and pp in b-space

ratio of p-air/pp cross sections

$$\frac{\sigma_{\text{p-air}}^{\text{prod}}(s)}{\sigma_{\text{pp}}(s)} = \frac{383.474 + 33.158 \log \sqrt{s} + 1.3363 \log^2 \sqrt{s}}{69.3286 + 12.6800 \log \sqrt{s} + 1.2273 \log^2 \sqrt{s}}$$

The ratio tends to a finite value in the asymptotic limit

asymptotic limit of ratio p-air / pp

Conclusions

We believe that we have realistic pp inputs, with energy dependence.

The simplest Glauber calculation accounts for the C.R measurements of p-air production cross section at all energies 1 TeV – 100 TeV.

We give predictions for LHC energies and beyond present experiments and for an asymptotic regime.

Acknowledgments

The authors wish to thank the Brazilian agencies CNPq, PRONEX, FAPERJ and CAPES for financial support.

Thanks