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“* From quasi-real to deeply virtual Compton scattering
“* Higher twist contributions to DVCS

“* One-to-one maps among GPD representations

“+ Data description/predicitions (partially includes DVMP)
“* Unifying the partonic picture
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GPD related hard exclusive processes

e Deeply virtual Compton scattering (clean probe)

scanned area of the surface as
a functions of lepton energy
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factorization proof for transversal cross sections
[Collins Freund (99)]

e Deeply virtual meson prodqction (flavor filter)

4 ep—>e'p' Uy
/. ./ €
eEp — EPT 4)_/,/
ep — e’ p/ 0 LLLLLLy* v ’,’ twist-two observables:
ep — 6/,rm_—|— L,/ longitudinal cross sections
p )4 o transverse target spin
EP — € Np D P asymmetries
e cftc.

factorization proof for longitudinal cross sectiorfs
[Collins, Frankfurt, Strikman (96)]



GPDs embed non-perturbative physics

_ _ _ [DM et. al (91/94)
GPDs appear in various hard exclusive processes, Radyushkin (96)

Ji (96)]
e.g., hard electroproduction of photons (DVCS)
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perturbation theory (conventional) depends on

observable (our conventions/microscope) approximation



ngher tw:st contrlbutlons to DVCS
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* collinear factorization approach (calculating Feynman diagrams on partonic level)
* operator product expansion (in terms of light-ray operators)
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* expansion in leading 1/x? singularities is easily done by projection on the
light cone n,~q,+...and n,”~P +..0r n,=q,, and n,"=q,,+ ... q,, .

with q,=(q,,+9,,)2 and P,=p,,+p,,
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consequences of 1/Q truncation and restriction to leading order in pQCD
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* DVCS tensor structure depends on the choice of n

* scaling variable &~ xg/(2-xg) depends on the choice of n

* gauge and translation invariance holds only to leading power accuracy
* DVCS tensor structure is not complete

to overcome these problems one should go

* to twist-3 accuracy, yields 4 other GPDs (LT photon helicity flips) [done, 2000]

* to NLO, yields 4 gluon transversity GPDs (TT photon helicity flips) [done, 2000]

* twist-4 accuracy pushes ambiguity to the 1/Q* level [Braun, Manashov 2011]
but yields new parton correlation functions, however, no new structures

What is the problem in calculating higher twist contributions?
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Conformal PWE of GPDs

« GPD support is a consequence of Poincaré covariance (polynomiality)
1

Hj(n7t7:u2) — /1d$ Cj(wan)H(xanatMU?)a Cj(flfaﬁ) — 77]0]3/2($/77)

 conformal moments evolve autonomously (to LO and beyond in a special scheme)
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* inverse relation is given as series of (mathematical) generalized distributions:
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e various ways of resummation were proposed:

smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schafer (97/99)]
mapping to a kind of forward PDFs [A. Shuvaev (99), J. Norltzsch (00)]

“dual’ parameterization [M. Polyakov, A. Shuvaev (02), Polyakov (07), Semenov-Tian-Shansky |
based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]
Mellin-Barnes integral [DM, Schafer (05); A. Manashov, M. Kirch, A. Schéafer (05)]



Purely mathematical problems/exercises:
* show that GPD representations are in one-to-one correspondence
* give inverse transformation (in principle done for Mellin-Barnes integral)
* support properties of Shuvaev's forward-like GPDs’ is not known

(i.e. Shuvaev s claim is wrong -- known since more than one decade that)
new: [DM, M. Polyakov, K. Semenov-Tian-Shansky (??)]

I. it is explicitly shown that "dual parameterization’ and
Mellin-Barnes integral + SO(3) PWE are equivalent
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(state-of-art formalism (NLO/NNLO, twist-4) is worked out in MB representation)

ii. (numerical) map of double distributions to conformal moments
by means of Appell's F, function



Strategies to analyze DVCS data

(ad hoc) modeling: VGG code [Goeke et. al (01) based on Radyushkin’s DDA]
BMK model [Belitsky, DM , Kirchner (01) based on RDDA]
“aligned jet’ model [Freund, McDermott, Strikman (02)]
Goloskokov/Kroll (05) based on RDDA (pinned down by DVMP)
“dual’ model [Polyakov,Shuvaev 02;Guzey,Teckentrup 06;Polyakov 07]
“ - % [KMP-K (07) in MBs-representation]
polynomials [Belitsky et al. (98), Liuti et. al (07), Moutarde (09)]

dynamical models: not applied [Radyushkin et.al (02); Tiburzi et.al (04); Hwang DM (07)]...
(respecting Lorentz symmetry)

flexible models: any representation by including unconstrained degrees of freedom
(for fitting) KMP-K (07/08) for H1/ZEUS in MBs-integral-representation

CFFs (real and imaginary parts) and GPD fits/predictions

i. CFF extraction with formulae (local) [BMK (01), HALL-A (06)] and [KK,DM, Murray]
least square fits (local) [Guidal, Moutarde (08...)]
neural networks — a start up [KMS (11)]

ii. dispersion integral’ fits [KMP-K (08),KM (08...)]

iii. flexible GPD model fits [KM (08...), AFKM (13), KMM (13), LSM (13)]

vi. model comparisons VGG code, however also BMKO01 (up to 2005)

& predictions Goloskokov/Kroll (07) model based on RDDA 8
[DVCS: Kroll, Moutarde, Sabatie (13)]



[Belitsky, DM (97);
Sta tus Of theory Mankiewicz et. al (97);
Ji,Osborne (97/98);
v twist-two DVCS coefficients at next-to-leading order  Pire, Szymanowski, Wagner
(11); DM, Pire, SzymanowskKi,
v twist-two DVMP coefficients at next-to-leading order  Wagner (11)]
new . [Belitsky, DM (01);
NLO effects are well understood generically  Ivanov, Szymanowski,Krasnikov (04)]
large-¢: logarithmical enhancement
. . : DM, T. Lautschlager,
valence region: weak evolution implies moderate effects b cor-Kumericki.
small-¢: model dependence A. Schaefer (13)

v"anomalous dimensions and evolution kernels at next-to-leading order

evolution effects can be called moderate, except for H/E at small- € Eﬁf::j:g ('3':")](98)

NLO analyses have to include NLO evolution
[DM (06);

v gluon transversity at next-to-leading order [Belitsky, DM (00)] KMP-K,
Schaefer (06)]

v" next-to-next-to-leading order for DVCS in a specific conformal subtraction scheme

NLO — NNLO corrections can be called moderate w.r.t. LO - NLO. _
[Anikin,Teryaev, Pire (00);

. . . . Polyakov et. al (00),
v twist-three including quark-gluon-quark correlation at LO Bg,ﬁik‘;,";,’\,, (%0(); ,zive| et. al,

Weiss, Radyushkin (00)]

v partially, twist-three sector at next-to-leading order [Kivel, Mankiewicz (03)]

? "target mass corrections’ (not understood) [Belitsky DM (01)] 9

new

v kinematical twist-four corrections [Braun. Manashov (11)]



works somehow without DIS at LO

DIS+DVCS+DVMP phenomenology at small-xg (H1,ZEUS)

[T. Lautenschlager, DM, A. Schafer (13)]

works at NLO (C¥ > 4 GeV?), done with Bayes theorem (probability distribution function)
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» a complete measurement allows in principle to pin down all CFFs KK, DM, Murray (13)

» missing information in incomplete measurements can be filled with noise
(Guidal's philosophy: use noise together with hypotheses and model constraints,

our results are compatible)
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KM models are available at WWW

o http://calculon.phy.hr/gpd/ — binary code for cross
sections

% xs.exe
xs.exe ModelID Charge Polarization Ee Ep B Q2 t phi

returns cross section (in nb) for scattering of lepton of energy Ee
on unpolarized proton of energy Ep. Charge=-i1 is for electron.

ModelID is one of
0 debug, always returns 42,
1 KM09a - arXiv:0004,0458 fit without Hall A,
2 KM09b - arXiv:0904.0458 fit with Hall &,

3 KM10 - preliminary hybrid fit with LO sea evolution, from Trento presentation,
4 ¥Mi0a - preliminary hybrid fit with LO sea evolution, without Hall A data
b KMi0b - preliminary hybrid fit with LO sea evolution, with Hall A data

xB (2 t phi -- usual kinematics (phi is in Trento convention)

hxs.exe 1 -1 1 27.6 0.938 0.111 3. -0.3 0

0.18584386497261



GPD page and server

o Durham-like CFF/GPD server page
o
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Prospect: quantifying partonic content

elastic Iooks doable
processes —> FFS G [Hwang, DM (07,14)
hard excl.
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Summa

GPDs are intricate and (thus) a promising tool
> to reveal the transverse distribution of partons (to some extend done at small xg)

> to address the spin content of the nucleon (not possible at present in pheno.)
» providing a bridge to LCWFs & non-perturbative methods (e.g., lattice)
» modeling in terms of effective LCWFs is doable (requires efforts)

first decade of hard exclusive leptoproduction measurements
* CFFs have their own interest, bridging low and high virtuality regimes

* should be straightforward to improve global (flexible) model fits to DVCS
* DVCS and DVMP data are describable in global NLO fits at small x
* moving on: to NLO, kinematical twist, full GPD models, DVCS+DVMP+...

* covering the kinematical region between HERA (COMPASS) experiments
within a high luminosity machine and dedicated detectors is needed to
quantify exclusive and inclusive QCD phenomena: handle on GPD E & 3D

* some kind of education is desired before one can enter GPD phenomeno1l5c>gy
* theory development is needed to address phenomenological goals



