Lessons from LHC elastic & diffractive data

Valery Khoze, Alan Martin and Misha Ryskin

In the light of LHC data, we discuss the global description of all high-energy elastic and diffractive data, using a one-pomeron pole model, but including multi-pomeron interactions.

The LHC data indicate the need of a $k_T(s)$ behaviour, where k_T is the parton transverse momentum along the partonic ladder structure of the pomeron.

Diffraction 2014, Primosten, Croatia, Sept.10-16

Elastic amp. $T_{el}(s,b)$

bare pomeron amp.
$$\Omega/2 =$$

Im
$$T_{\rm el} = \boxed{ } = 1 - e^{-\Omega/2} = \sum_{n=1}^{\infty} \boxed{ \boxed{ \cdots } \Omega/2}$$
 (s-ch unitarity)

introduce diffve estates ϕ_i , ϕ_k (combns of p,p*,..) which only undergo "elastic" scattering (Good-Walker)

Im
$$T_{ik} = \int_{k}^{i} = 1 - e^{-\Omega_{ik}/2} = \sum_{i=1}^{n} \frac{\Omega_{ik}}{2}$$

include high-mass diffractive dissociation

$$\Omega_{ik} = \prod_{k}^{i} + \prod_{k}^{i} M + \prod_{k}^{i} \cdots + \prod_{k}^{i} \cdots$$

KMR model for the global description of high energy diffractive data

soft

hard

Reggeon Field Theory with phenomenological soft pomeron

pQCD partonic approach

smooth transition using QCD / "BFKL" / hard pomeron

There exists only one Pomeron, which makes a smooth transition from the hard to the soft regime

KMR model is a partonic approach which includes the k_t dependence of the pomeron in the log(1/x) evolution/cascade, as well as eikonal and enhanced multi-pomeron absorptive effects

Partonic structure of "bare" Pomeron

BFKL evolⁿ in rapidity generates ladder

$$\frac{\partial \Omega(y, k_t)}{\partial y} = \bar{\alpha}_s \int d^2k_t' K(k_t, k_t') \Omega(y, k_t')$$

At each step k_t and b of parton can be be changed – so, in principle, we have 3-variable integro-diff. eq. to solve

- Inclusion of k_t crucial to match soft and hard domains.
 Moreover, embodies less screening for larger k_t comp^{ts}.
- We use a simplified form of the kernel K with the main features of BFKL diffusion in log k_t^2 , $\Delta = \alpha_p(0) 1 \sim 0.3$
- b dependence during the evolution is prop' to the Pomeron slope α' , which is v.small (α' <0.05 GeV⁻²) -- so ignore. Only b dependence comes from the starting evolⁿ distribⁿ
- Evolution gives

How are Multi-Pomeron contrib^{ns} included?

Now include rescatt of intermediate partons with the "beam" i and "target" k (KMR)

evolve up from y=0

$$\frac{\partial \Omega_k(y)}{\partial y} = \bar{\alpha}_s \int d^2k'_t \exp(-\lambda(\Omega_k(y) + \Omega_i(y'))/2) K(k_t, k'_t) \Omega_k(y)$$

evolve down from y'=Y-y=0

$$\frac{\partial \Omega_i(y')}{\partial y'} = \bar{\alpha}_s \int d^2k'_t \exp(-\lambda(\Omega_i(y') + \Omega_k(y))/2) K(k_t, k'_t) \Omega_i(y')$$

Y y'=Y-y y 0

where $\lambda\Omega_{i,k}$ reflects the different opacity of protons felt by intermediate parton, rather the proton-proton opacity $\Omega_{i,k}$ λ ~0.2

solve iteratively for $\Omega_{ik}(y,k_t,b)$ inclusion of k_t crucial

Note: data prefer $\exp(-\lambda\Omega)$ \rightarrow $[1-\exp(-\lambda\Omega)]/\lambda\Omega$ Form is consistent with generalisation of AGK cutting rules

Surprises from LHC diffractive data

	σ(tot) (mb)	B _{el} (0) (GeV ⁻²)	σ ^{SD} (low M) (mb)	
KMR (before LHC)				
predict at 7 TeV	88	18.5	6	
Expt. at 7 TeV				
TOTEM	98.6 ± 2.2	19.9 ±0.3	2.6 ±2.2	
ATLAS (ALFA)	95.35 ±1.3	19.73 ±0.24		

also $\sigma^{\text{SD}}(\text{high M})$, σ^{DD} predicted larger than TOTEM data

something is missing in the KMR model

Quote from Gotsman, Levin, Maor (August 2014)

The strong interaction at high energies is one of the most difficult and unrewarding problems of HEP.

• • • • • •

The LHC data showed that models [8-13] based on pomeron calculus failed to provide significant predictions and were not able to describe the data at high energy.

- [8] A. Donnachie and P.V. Landshoff, Nucl. Phys. B231, (1984) 189; Phys. Lett. B296, (1992) 227; Zeit. Phys.
- C61, (1994) 139.
- [9] E. Gotsman, E. Levin and U. Maor, Eur. Phys. J. C 71, 1553 (2011) [arXiv:1010.5323 [hep-ph]].
- [10] E. Gotsman, E. Levin, U. Maor and J. S. Miller, Eur. Phys. J. C 57, 689 (2008) [arXiv:0805.2799 [hep-ph]].
- [11] A. B. Kaidalov and M. G. Poghosyan, arXiv:0909.5156 [hep-ph].
- [12] A. D. Martin, M. G. Ryskin and V. A. Khoze, arXiv:1110.1973 [hep-ph].
- [13] S. Ostapchenko, Phys.Rev. D 81, 11402 (2010).

Very few measurements of σ^{SD} (low M)

Unexpectedly small Before TOTEM, models predicted $\sigma_{low M} \sim 6-10$ mb

Conventional Reggeon Field Theory assumes all k_T 's are limited, and that trajectories and couplings do not depend on energy, \sqrt{s} .

LHC data indicates problems --- recall the observed growth of the $\langle k_T \rangle$ of secondaries with energy.

Missing physics

pomeron— ϕ_i couplings, γ_i , are driven by $\langle r_{i,parton} \rangle$ in ϕ_i states

However, γ_i 's controlled by transverse size of pomeron ($\propto 1/k_{pom}$) when it becomes smaller than $\langle r_{i,parton} \rangle \propto 1/k_i$

$$\gamma_i \propto 1 / (k_{pom}^2 + k_i^2)$$
 where $k_{pom}^2 = k_0^2 s^{0.28}$

As $s \to \infty$ all γ_i become equal, $\gamma_i \propto 1/k_{pom}^2$ (all $\gamma_i \to 1$) so dispersion decreases, $\sigma^{SD} \propto (\langle \gamma_i^2 \rangle - \langle \gamma_i \rangle^2) \to 0$ so dissociation is suppressed as collider energy increases

We call this the $k_{\tau}(s)$ effect

Decrease of γ_i dispersion means screening brings 2-ch eikonal closer to 1-ch eik. and absorption smaller. As a result it speeds up the growth of σ (tot) in the energy interval

		Tevatron → LHC → 100 TeV (7 TeV)	TOTEM (7 TeV)		
σ(tot)	mb	$77 \rightarrow 98.7 \rightarrow 166$	98.6 ± 2.2		
$\sigma_{\text{SD}}(\text{low})$	GeV ⁻² M) mb	$16.8 \rightarrow 19.7 \rightarrow 29.4$ $3.4 \rightarrow 3.6 \rightarrow 2.7$	19.9 ± 0.3 2.6 ± 2.2		

The $k_T(s)$ effect brings model into agreement with the TOTEM data; also describes high-mass σ^{SD} , σ^{DD} data

The acceleration of the growth of $\sigma(tot)$ with s only takes place in the interval where the $\gamma_i(s) \to 1$

Global fit with two-channel eikonal – needed for σ^{SD} (low M)

find form factors $F_i(t) \sim \exp(-b_i \sqrt{t})$ (coincidence like Orear et al.)

Real part important, calculate from dispersion relation

Tension between high-mass σ^{SD} data

Global fit exposes some tension between TOTEM and CDF (as well as ATLAS, CMS) single-diffractive data ---- see also Ostapchenko.

Description is a bit above TOTEM σ^{SD} data and a bit below CDF, ATLAS, CMS data

Global KMR description below these SD data, yet above TOTEM σ^{SD}

Preliminary TOTEM results on single diffraction in three Mass bins

Uncertainty estimated on slope parameter B ~ 15 % and on cross sections ~20%

σ^{SD}(high M) mb

Mass interval (GeV)	(3.4, 8)	(8, 350)	(350, 1100)
Prelim. TOTEM data	1.8	3.3	1.4
CMS data		4.3	
Present model	2.3	4.0	1.4

CMS integrated over 12 < M < 394 GeV, just a bit smaller than 8 < M < 350 GeV of TOTEM, in terms of log M.

Again above TOTEM below CMS

t dependence of elastic slope shown by TOTEM as deviation from pure exponential $d\sigma(el)/dt \sim exp(19.38 t)$

KMR model values post-LHC

TOTEM $\Delta \eta$ bins

	\sqrt{s}	$\sigma_{ m tot}$	$\sigma_{ m el}$	$B_{\rm el}(0)$	$\sigma_{\mathrm{SD}}^{\mathrm{low}M}$	$\sigma_{\mathrm{DD}}^{\mathrm{low}M}$	$\sigma_{\mathrm{SD}}^{\Delta\eta_1}$	$\sigma_{\mathrm{SD}}^{\Delta\eta_2}$	$\sigma_{\mathrm{SD}}^{\Delta\eta_3}$	$\sigma_{ m DD}^{\Delta\eta}$
('	TeV)	(mb)	(mb)	(GeV^{-2})	(mb)	(mb)	(mb)	(mb)	(mb)	(μb)
	1.8	77.0	17.4	16.8	3.4	0.2				
	7.0	98.7	24.9	19.7	3.6	0.2	2.3	4.0	1.4	145
	8.0	101.3	25.8	20.1	3.6	0.2	2.2	3.95	1.4	139
	13.0	111.1	29.5	21.4	3.5	0.2	2.1	3.8	1.3	118
	14.0	112.7	30.1	21.6	3.5	0.2	2.1	3.8	1.3	115
	100.0	166.3	51.5	29.4	2.7	0.1				

TOTEM

7 98.6 25.4 19.9 2.6 1.8 3.3 1.4 116 (2.2) (0.3) (2.2) --- up to 20% --- (25)

Main Conclusion

The LHC elastic and diffractive data expose deficiencies of the KMR model predictions based on global fits of pre-LHC data:

- --- σ (tot) is larger than expected
- --- B_{el}(0) is larger than expected
- --- TOTEM diffractive rates are smaller than predicted

These discrepancies may **all** be removed by noting that the "pomeron – proton (diffractive estate)" couplings should tend to a common limit as $s\to\infty$, when the decreasing pomeron size starts to control the couplings — the $k_T(s)$ effect.

Possible exp^{tal} **check**: measure the p_T of B or D mesons as a function of s, and see the growth of p_T coming from the larger p_T of the incoming gluons in $gg \rightarrow QQ(bar)$

BACK UP SLIDES

Double Dissociation

$$S_{\mathrm{DD}}^{a} \simeq 0.16$$

$$B_{
m SD}^2/B_{
m el}B_{
m DD}$$
 $\sigma_{
m DD}$ $\sigma_{
m el}$

$$\frac{1.36}{6.8} \frac{0.16}{(0.08)^2}$$

 $\simeq 5.0$ old KMR

suppression of $d\sigma/dt|_{t=0}$

$$S_{\mathrm{SD}}^2 \simeq 0.08$$

TOTEM data

$$\frac{\sigma_{\rm DD} \ \sigma_{\rm el}}{(\sigma_{\rm SD})^2} \simeq \frac{0.116 \times 25}{(0.9)^2} \simeq 3.6$$

Discrepancy renconciled by $k_T(s)$ effect

LHC

DGLAP In k_t² evolⁿ interval << overestimates <k_t> underestimates growth dN/dη

BFKL In(1/x) evolⁿ interval not strongly-ordered in k_t $dN/d\eta = n_p (dN_{1-Pom}/d\eta)$ n_p =no. of Poms. grows

Enh: $\sigma_{abs} \sim 1/k_t^2$

→dyn.cutoff k_{sat}

→besides SD, DD

the same central rapidity interval as that selected by TOTEM, which corresponds to $M_{\rm diss}=(8,350)$ GeV at $\sqrt{s}=7$ TeV. $\sigma_{\rm SD}$ is calculated for the dissociation of one proton.

High-energy pp interactions

soft

hard

Reggeon Field Theory with phenomenological soft Pomeron

pQCD partonic approach

smooth transition using QCD / "BFKL" / hard Pomeron

There exists only one Pomeron, which makes a smooth transition from the hard to the soft regime

Can this be the basis of a unified partonic model for both soft and hard interactions ??

"Soft" and "Hard" Pomerons?

A vacuum-exchange object drives soft HE interactions. Not a simple pole, but an enigmatic non-local object. Rising σ_{tot} means multi-Pom diags (with Regge cuts) are necessary to restore unitarity. σ_{tot} , $d\sigma_{el}/dt$ data, described, in a limited energy range, by eff. pole $\alpha_{P}^{eff} = 1.08 + 0.25t$

Sum of ladders of Reggeized gluons with, in LLx BFKL, a singularity which is a cut and not a pole. When HO are included the intercept of the BFKL/hard Pomeron is $\alpha_P^{\text{bare}}(0) \sim 1.3 - 1.4$ $\Delta = \alpha_P(0) - 1 \sim 0.35$

$$\alpha_{\text{P}}^{\text{eff}}$$
 ~ 1.08 + 0.25 t up to Tevatron energies

$$(\sigma_{tot} \sim S^{\Delta})$$

$$\alpha_P^{\text{bare}} \sim 1.35 + 0 \text{ t}$$

with absorptive (multi-Pomeron) effects

BFKL stabilized

$$\Delta = \alpha_{\mathsf{P}}(0) - 1$$

Small-size "BFKL" Pomeron is natural object to continue from "hard" to "soft" domain

Phenomenological hints that R_{bare Pom} << R_{proton}

small slope $\alpha'_{bare} \sim 0$ success of Additive QM small size of triple-Pomeron vertex small size of BEC at low N_{ch}

Pomeron is a parton cascade which develops in $\ln(1/x)$ space, and which is not strongly ordered in k_t .

However, above evidence indicates the cascade is compact in b space and so the parton k_t 's are not too low. We may regard the cascade as a hot spot inside the two colliding protons

Optical theorems

at high energy use Regge

$$\sigma_{\text{total}} = \sum_{X} \left| \sum_{\alpha_{IP}} (0) \right| = \lim_{\alpha_{IP}} \left(\frac{s}{s_0} \right)^{\alpha_{IP}(0) - 1}$$

High-mass diffractive dissociation

triple-Pomeron diag

$${\sf g_N}^3 {\sf g_{3P}} {\left(rac{M^2}{s_0}
ight)}^{lpha_{I\!\!P(0)}-1} {\left(rac{s}{M^2}
ight)}^{2lpha_{I\!\!P}(t)-2}$$

Optical theorems

at high energy use Regge

$$\sigma_{\text{total}} = \sum_{X} \left| \begin{array}{c} \sum_{X} \sum_{X}$$

$$X = Im$$

but screening/s-ch unitarity important so σ_{total} suppressed

$$g_N^2 \left(\frac{s}{s_0}\right)^{\alpha_{\mathbb{P}}(0)-1}$$

High-mass diffractive dissociation

triple-Pomeron diag

but screening important

$$g_{\mathsf{N}}{}^{3}g_{\mathsf{3P}} \left(\frac{M^{2}}{s_{0}}\right)^{\alpha_{I\!\!P}(0)-1} \left(\frac{s}{M^{2}}\right)^{2\alpha_{I\!\!P}(t)-1}$$

Schegelsky, Ryskin 1112.3243

$$B_{el} = B_0 + 2\alpha_P^{'eff} \ln(s/s_0)$$

$$B_{el} = B_0 + b_2 \ln^2(s/s_0)$$