Unified BFKL & DGLAP evol. in terms of θ

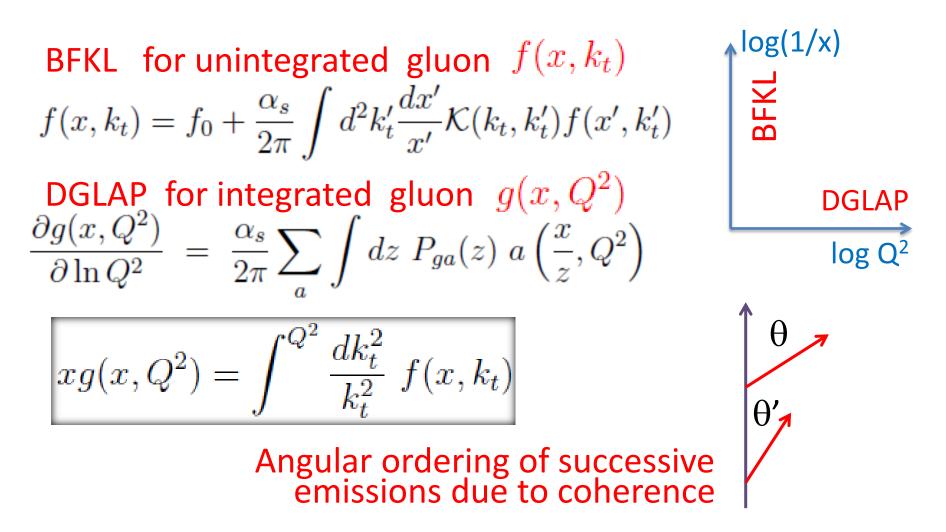
Emmanuel de Oliveira, Alan Martin & Misha Ryskin

arXiv:1404.7670

We present an evolution equation which simultaneously sums the leading BFKL and DGLAP logs for an integrated gluon distribution $g(x,\theta)$ in terms of a single variable ---the emission angle of the gluon $\theta = k_t/xp$

Recall BFKL evolution is written in terms of a gluon distribⁿ $f(x, k_t)$ unintegrated over its transverse momentum

Diffraction 2014, Primosten, Croatia, Sept.10-16



 $heta = k_t/xp$ accounts for both DGLAP logk_t² and BFKL log1/x

Possible unified evolution eq. for

$$\frac{\partial g(x,\theta)}{\partial \ln \theta}$$
 ??

unified eq. for unintegrated gluon Kwiecinski, M, Stasto

$$f(x, k_t) = f_0(x, k_t) + \frac{\alpha_s}{2\pi} \left(\int d^2 k'_t \frac{dx'}{x'} \mathcal{K}(k_t, k'_t) f(x', k'_t) + \int \frac{dk'^2_t}{k'^2_t} dz P(z) f\left(\frac{x}{z}, k'_t\right) - DL \right)$$
BFKL DGLAP

hidden in both DGLAP and BFKL terms, so as to avoid double counting,

$$\overline{\mathcal{K}}(k_t, k_t') f(x', k_t') = 2N_c \frac{k_t^2}{k_t'^2} \left[\frac{f(x', k_t') - f(x', k_t)}{|k_t'^2 - k_t^2|} + \frac{f(x', k_t)}{\sqrt{4k_t'^4 + k_t^4}} - \frac{f(x', k_t')}{k_t^2} \right]$$

$$\mathcal{K}f$$

$$\overline{\mathcal{K}} = \mathcal{K} - \frac{2N_c}{t'^2}$$

 κ_t

unified eq. for unintegrated gluon Kwiecinski, M, Stasto
$f(x,k_t) = f_0(x,k_t) + $
$\frac{\alpha_s}{2\pi} \left(\int d^2 k'_t \frac{dx'}{x'} \mathcal{K}(k_t, k'_t) f(x', k'_t) + \int \frac{dk'^2_t}{k'^2_t} dz P(z) f\left(\frac{x}{z}, k'_t\right) - DL \right)$ $BFKL \qquad \qquad$
BFKL DGLAP
$\mathbf{k} = \mathbf{k} - \frac{2N_c}{k_t'^2} \textbf{C}$ Double Log term needed to avoid double counting
kin. constraint
$\overline{\mathcal{K}}(k_t, k_t') f(x', k_t') = 2N_c \frac{k_t^2}{k_t'^2} \left[\frac{\Theta(k_t^2/z - k_t'^2) f(x', k_t') - f(x', k_t)}{ k_t'^2 - k_t^2 } \right]$
$+ \frac{f(x',k_t)}{\sqrt{4k_t'^4 + k_t^4}} - \frac{\Theta(k_t^2 - k_t'^2)f(x',k_t')}{k_t^2} \right] .$
DGLAP ordering

$$\begin{aligned} k_t \to \theta = k_t/xp, \quad k'_t \to \theta' = k'_t/x'p, \\ f(x,k_t) &= f_0(x,k_t) + \\ &+ \frac{\alpha_s}{2\pi} \left(\int d^2 k'_t \frac{dx'}{x'} \overline{\mathcal{K}}(k_t,k'_t) f(x',k'_t) + \int \frac{dk'_t^2}{k'_t^2} dz P(z) f\left(\frac{x}{z},k'_t\right) \right) \\ &\uparrow \\ &\downarrow \\ d\ln(1/x') \to d\ln(\theta') \\ after DL subt^n no \log k_t dep. \quad \int (dk'_t^2/k'_t^2) \to 2 \int (d\theta'/\theta') \\ \frac{f(x,\theta)}{2\pi} \int_{\theta_0}^{\theta} \left(\int d^2 k'_t \overline{\mathcal{K}}(k_t,k'_t) f(x',k'_t) + 2 \int_{z_{\min}}^{1} dz P(z) f\left(\frac{x}{z},\theta'\right) \right) \frac{d\theta'}{\theta'} \\ \frac{\partial(xg(x,\theta))}{2\pi\pi} \int_{\theta_0}^{\theta} \int d^2 k'_t \overline{\mathcal{K}}(k_t,k'_t) \frac{\partial[x'g(x',\theta')]}{\partial \ln\theta'^2} \frac{d\theta'}{\theta'} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{2\pi\pi} \int_{\theta_0}^{\theta} \int d^2 k'_t \overline{\mathcal{K}}(k_t,k'_t) \frac{\partial[x'g(x',\theta')]}{\partial \ln\theta'^2} \frac{d\theta'}{\theta'} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{2\pi\pi} \int_{\theta_0}^{\theta} \int d^2 k'_t \overline{\mathcal{K}}(k_t,k'_t) \frac{\partial[x'g(x',\theta')]}{\partial \ln\theta'^2} \frac{d\theta'}{\theta'} \\ \frac{\partial[x'g(x,\theta)]}{\theta'} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{2\pi\pi\pi} \int_{\theta_0}^{\theta} \int d^2 k'_t \overline{\mathcal{K}}(k_t,k'_t) \frac{\partial[x'g(x',\theta')]}{\partial \ln\theta'^2} \frac{d\theta'}{\theta'} \\ \frac{\partial[x'g(x,\theta)]}{\theta'} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right) \\ \frac{\partial[x'g(x,\theta)]}{\partial \ln\theta'^2} + \int_x^1$$

conventional integrated PDF

unintegrated PDF

$$xg(x,Q^2) = \int^{Q^2} \frac{dk_t^2}{k_t^2} f(x,k_t)$$

express in terms of θ $xg(x,\theta) = \int^{\theta^2} f(x,\theta') \frac{d\theta'^2}{\theta'^2}$ or $\frac{\partial(xg(x,\theta))}{\partial \ln^2} = f(x,\theta)$ $k_t \to \theta = k_t / xp$

$$\frac{\partial (xg(x,\theta))}{\partial \ln \theta^2} = f(x,\theta) = f_0(x,\theta_0) + + \frac{\alpha_s}{2\pi} \int_{\theta_0}^{\theta} \int d^2 k'_t \,\overline{\mathcal{K}}(k_t,k'_t) \frac{\partial [x'g(x',\theta')]}{\partial \ln \theta'^2} \frac{d\theta'}{\theta'} + \int_x^1 dz P(z) \frac{x}{z} g\left(\frac{x}{z},z\theta\right)$$

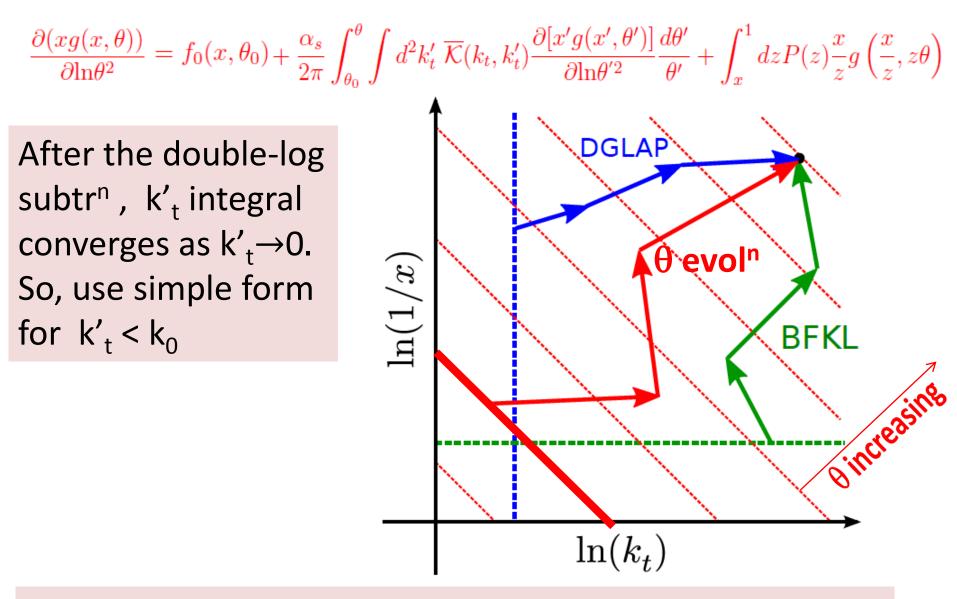
The value of the derivative over $\ln\theta'^2$ is calculated using the gluon PDF at angles θ' not equal to θ . This is a common property of BFKL (recall r.h.s. integrates over k'_t)

Not a problem ---- g only enters at values $\theta' < \theta$ where the derivative is already known from previous evolution. Check that $\theta' < \theta$: in the DGLAP term $\theta' = z\theta < \theta$

in the BFKL term we have kin. constraint

$$k_t'^2 < k_t^2/z \longrightarrow \theta' = \frac{zk_t'}{xp} < \sqrt{z}\frac{k_t}{xp} < \sqrt{z}\theta$$

Advantage of using θ



Evolⁿ from θ_0 (domain of rel. large x and low k_t) -- natural input large-dist. confinement (~0.5fm)

Energy-momentum conservation

Unlike the DGLAP part, the leading log BFKL part gives additional energy to new partons, which leads to a small violation of energy-momentum conservation. Can add NLL contribution which restores conservation. Contribution extends into $\theta' > \theta$ region, so need one or two iterations to ensure conservation see also 1406.2910

Straightforward to include the quark contribution in evolution

Straightforward to extend to NLO, but not so simple

Conclusions

There is an evolution eq., which sums both the leading BFKL and DGLAP logs, for an **integrated** distribution $g(x,\theta)$, where θ = angle of emitted gluon. Coherence $\rightarrow \theta' < \theta$

It is not a problem that r.h.s. contains $g(x',\theta')$, since for $\theta' < \theta$, we know $g(x',\theta')$ from previous evolution step. [Unlike conventional BFKL for unintegrated $f(x,k_t)$, where there is diffusion into $k'_t > k_t$ (as well as $k'_t < k_t$)].

 $\theta' < \theta$ is provided by the kin. constraint $k'_t^2 > k_t/z$, which also gives for a major part of higher-order BFKL contribⁿ.

Unified BFKL/DGLAP evolution in terms of a single variable, θ , should be convenient for Monte Carlo simulations.