Diffractive and total cross sections in high energy pp, pA and γ*A reactions with the dipole formalism

András Ster

Wigner Research Centre for Physics, Budapest, Hungary

Work in collaboration with Gösta Gustafson and Leif Lönnblad in Dept. of Astronomy and Theoretical Physics, Lund University, Sweden
Content

• Motivation
• The Lund Dipole Cascade Model
• Application in MC code DIPSY
• Preliminary results
• Summary
Motivation

The PYTHIA MC-model is the most successful description of inelastic reaction in DIS and pp collisions.

But: there are simplified assumptions about correlations and diffraction. It needs input structure function from data.

Our goal: to understand underlying dynamics in more detail.

- evolution of parton densities
- correlations and fluctuations
- diffraction
- nuclear collisions
Motivations - correlations

Earlier *Sjöstrand and van Zilj* assumed that the dependence of double-parton density on kinematic variables (x, Q^2) and on the separation in impact parameter space (b) factorizes.

Implemented in PYTHYA and HERWIG event generators

Problem: how to extrapolate to higher energies (LHC)

Our solution: detailed dynamical model for parton evolution (Lund Dipole Cascade Model)
The **Lund Dipole Cascade Model** is based on BFKL evolution equations and Müller’s dipole cascade model:

The Lund Dipole Cascade Model

It improves BFKL evolutions:

- LL BFKL is not good enough. NLL corrections are very large.
- Non-linear effects in the evolution are not included.
- Massless gluon exchange implies a violation of Froissart’s bound.
- It is difficult to include fluctuations and correlations; the BK equation represents a mean field approximation.
- They can only describe inclusive features, and not the production of exclusive final states.
- Analytic calculations are mainly applicable at extreme energies, well beyond what can be reached experimentally.
The Lund Dipole Cascade Model

Dipole cascades:

LL BFKL evolution in transverse coordinate space

Gluon emission probability:

$$\frac{d\mathcal{P}}{dy} = \frac{\bar{\alpha}}{2\pi} d^2r_2 \frac{r_{01}^2}{r_{02}^2 r_{12}^2}$$
The Lund Dipole Cascade Model

Dipole-dipole scattering:

Single gluon exchange \Rightarrow Colour reconnection between projectile and target

Born amplitude:

$$ f_{ij} = \frac{\alpha_s^2}{2} \ln^2 \left(\frac{r_{13}r_{24}}{r_{14}r_{23}} \right) $$

Multiple interactions:

Stochastic process \Rightarrow Born ampl. $F = \sum_{ij} f_{ij}$

Unitarity: Eikonal approx. in imp. parameter space

Uniterized ampl.: $T = 1 - e^{-\sum f_{ij}}$ (neglecting fluctuations)

$$ \frac{d\sigma_{el}}{d^2b} = T^2, \quad \frac{d\sigma_{tot}}{d^2b} = 2T $$
The Lund Dipole Cascade Model

Saturation:

Multiple interactions \Rightarrow colour loops \sim pomeron loops

Multiple interaction in one frame \Rightarrow colour loop within evolution in another frame

The Lund Dipole Cascade Model

Inclusive observables:

\[\sigma_{tot} = 2 \int d^2 b \langle 1 - e^{-F(b)} \rangle \]

\[\sigma_{el} = \int d^2 b \langle 1 - e^{-F(b)} \rangle^2 \]

\[\sigma_D = \int d^2 b \left(\langle (1 - e^{-F(b)})^2 \rangle - \langle 1 - e^{-F(b)} \rangle^2 \right) \]

\[\sigma_{inND} = \int d^2 b \langle 1 - e^{-2F(b)} \rangle \]

With the ikonal form of the transition probability:

\[T(b) = 1 - e^{-F(b)} \]
The Lund Dipole Cascade Model

In the (Glauber like) black disk limit: \(T(b) = \Theta(R - b) \)

\[
\begin{align*}
\sigma_{tot} &= 2 \int d^2 b \Theta(R - b) = 2\pi R^2 \\
\sigma_{el} &= \int d^2 b \Theta(R - b)^2 = \pi R^2 \\
\sigma_D &= 0 \\
\sigma_{inND} &= \int d^2 b \left(1 - (1 - T(b))^2 \right) = \pi R^2
\end{align*}
\]

Hence:

\(\sigma_{inND} = \sigma_{el} = \sigma_{tot}/2 \)
Application in MC code DIPSY

It includes:

- important not-leading effects in BFKL (E cons., running α_s)
- saturation in pomeron loops in the evolution
- confinement
- correlations and fluctuation
- collision between e,p,A
Application in MC code DIPSY

Dipole interactions:
Application in MC code DIPSY

Sample Au-Au event: (nucleons are dipole triangles here)
Application in MC code DIPSY

Sample Au-Au event:
Application in MC code DIPSY

Sample Au-Au event:
Preliminary results

Simulations are based on **tunes** to pp total cross sections because some tune parameters are inevitable in MC. For example, Λ_{QCD}:

$$\alpha_s(Q) = \frac{1}{b \ln(Q^2/\Lambda^2)} \quad (\text{LO})$$

hep-ex/0407021
Preliminary results

DIPSY parameters:

\(R_{\text{max}} \): Non-perturbative regularization
\(R_p \): Proton size (\(\approx R_{\text{max}} \))
\(w_p \): Fluctuations in the initial proton size (small)
\(\Lambda_{\text{QCD}} \): in the running \(\alpha_s \)
\(\lambda_r \): Swing parameter (saturated)
Preliminary results

With, for example:

$$\Lambda_{\text{QCD}} = 0.23 \text{ GeV}$$
Preliminary results

![Graph showing pp total cross-sections with different data sets and fitting lines.](image)
Preliminary results

Based on the Wood-Saxon nucleus charge density*:

\[
\rho(r) = \frac{\rho_0(1 + wr^2/R^2)}{1 + exp((r - R)/a)}
\]

Modified by GLISSANDRO for the nucleon center density for MC**

** : W. Broniowski et al., GLISSANDRO, nucl-th/0710.531v3
Preliminary results

pPb data of total inelastic cross sections:
- CMS: preliminary
- LHCb: first measurement
Preliminary results

\[\sigma_{\text{inel}}(7\text{TeV}) = 148 \text{ mb} \]
Preliminary results

pA total cross-sections

$\sigma_{\text{tot}} \text{ [mb]}$

$E_{\text{CMS(NN)}} \text{ [TeV]}$

- pPb
- pCu
- pO
- pp

5×10^3

Preliminary results

pA/pp total cross-section ratios

\[\frac{\sigma_{\text{tot,}pA}}{A\sigma_{\text{tot,}pp}} \]

\(E_{\text{CMS(NN)}} \) [TeV]

- pO
- pCu
- pPb
Preliminary results
Preliminary results
Preliminary results
Preliminary results

\(\gamma^* \text{Cu total cross-sections} \)

\(\sigma_{\text{tot}} \) [\(\mu \text{b} \)]

\(E_{\text{CMS} (eN)} \) [TeV]

\(Q^2 = 5 \text{GeV}^2 \)
\(Q^2 = 25 \text{GeV}^2 \)
\(Q^2 = 100 \text{GeV}^2 \)

(2TeV = 49 \(\mu \text{b} \))
Preliminary results

\[\frac{\sigma_{\text{tot, eAu}}}{A \sigma_{\text{tot, ep}}} \]

\(E_{\text{CMS(eN)}} \) [TeV] vs. \(Q^2 \) [GeV^2]

- \(Q^2 = 2.5 \text{GeV}^2 \)
- \(Q^2 = 5 \text{GeV}^2 \)
- \(Q^2 = 25 \text{GeV}^2 \)
- \(Q^2 = 100 \text{GeV}^2 \)

\(pPb/pp \)
Preliminary results

Total cross-section ratios

Swing effects

\[\frac{\sigma_{\text{tot, noswing}}}{\sigma_{\text{tot}}} \]

\[E_{\text{CMS(eN)}} \left[\text{TeV} \right] \]

\[\gamma^* \text{O} \left(Q^2 = 5 \text{GeV}^2 \right) \]

\[p\text{O} \]

\[p\text{Pb} \]
Preliminary results

Conditions set to the same:
- same WS distribution
- same R-hard-core = 0.45 fm
- same sigma_tot(pp)
- same sigma_inelND
Preliminary results

Further ongoing simulations are for:

- AA collisions (take lots of execution time)
- dn/dy distributions
Outlook

Things to do:

- speed-up large ion calculations
- final state effects
- diffractive final states
- NLL effects
- ...

Summary

Lund Dipole Cascade Model offers unique possibility to study gluon evolution inside hadrons at small x.

Reconstruction of pp cross sections and pPb inelastic cross sections from RHIC to LHC energies was successful.

Predictions for diffractive and total cross sections in various pA, γ^*A high energy reactions were made.