Exclusive Central Meson Production in Proton Antiproton Collisions at the Tevatron at $\sqrt{ } \mathrm{s}=1960 \mathrm{GeV}$ and 900 GeV

Maria Żurek

Research Center Jülich University of Cologne
on behalf of the CDF Collaboration

Physics Motivation
 Double Pomeron Exchange (DPE)

Single Diffraction

Double Pomeron Exchange

Pomeron:

- Carrier of 4-momentum between protons
- Strongly interacting color singlet combination of gluons and quarks
- Quantum numbers of vacuum
- LO: $\mathrm{P}=g g$

Analysis
 GXG reaction

$$
\left.\bar{p}+\mathrm{p} \rightarrow \overline{\mathrm{p}} \mathbf{(}^{*}\right)+\mathrm{GAP}+\mathrm{X}+\mathrm{GAP}+\mathrm{p} \mathbf{(}^{*}
$$

- X (in this study):
- hadron pair mostly $\pi^{+} \pi^{-}$
- central $\left|y\left(\pi^{+} \pi^{-}\right)\right|<1.0$
- between rapidity gaps $\Delta \eta>4.6$
- $\mathrm{Q}=\mathrm{S}=0, \mathrm{C}=+1, \mathrm{~J}=0$ or $2, \mathrm{I}=0$

Expected to be dominated by DPE in the t-channel!

Collider Detector at Fermilab

FERMILAB'S ACCELERATOR CHAIN

Collider Detector at Fermilab

- We do not detect outgoing protons
- Forward detectors in veto
- BSC - Beam Shower Counters
- CLC - Cherenkov Luminosity Counters
- PCAL - Plug Calorimeter

We require all detectors, $|\boldsymbol{n}|<5.9$, to be empty except for two tracks

Central Hadronic State Analysis

Candidates selection

Trigger requirements:

- 2 central $(|n|<1.3)$ towers with

$$
E_{1}>0.5 \mathrm{GeV}
$$

- PCAL ($2.11<|n|<3.64$) in veto
- CLC (3.75<|n|<4.75) in veto
- BSC1 (5.4<|n|<5.9) in veto

Gap cuts:

To determine noise levels in subdetectors we divide zero-bias sample from same periods into two sub-samples:
No Interaction:

- No tracks and
- No CLC hits and
- No muon stubs

No Interaction:

- No tracks and
- No CLC hits and
- No muon stubs

Interaction:

 At least one- Track or
- CLC hit or
- Muon stub

Exclusivity cuts

CDF Run II Preliminary

CDF Run II Preliminary

Central Hadronic State Analysis

Candidates selection

Exclusive 2 tracks:

\rightarrow Similar technique in region of central calorimeter
\rightarrow excluding cones of $R=0.3$ around each track extrapolation.

$$
R=\sqrt{(\Delta \eta)^{2}+(\Delta \varphi)^{2}}
$$

> The "hottest" EM tower must be less than 90 MeV

Additional cuts:

- quality of tracks
- 2 oppositely charged tracks
- cosmic ray rejection

Effective exclusive luminosity

- Determination of efficiency of having nopileup using zero-bias sample.

We measure ratio of empty events (all detectors on noise level) to all events.

- Exponential drop with bunch luminosity.
- Slope corresponds to total detected inelastic cross section.

	$1960 \mathbf{G e V}$	$\mathbf{9 0 0} \mathbf{G e V}$
$\sigma_{\text {obs }}(\|\boldsymbol{\eta}\|<5.9)$	$55.9(4) \mathrm{mb}$	$65.8(4) \mathrm{mb}$
$\mathbf{L}_{\text {eff }}$	$1.15 / \mathrm{pb}$	$0.059 / \mathrm{pb}$

Higher dissociation masses allowed at 1960 GeV

Central Hadronic State Analysis
 Acceptance and cut efficiency

CDF Run II Preliminary
Model independent analysis
Kinematic cuts:

- $P_{t}(\pi)>0.4 \mathrm{GeV} / \mathrm{c}$
- $|\eta(\pi)|<1.3$
- $\left|y\left(\pi^{+} \pi^{-}\right)\right|<1.0$

3 components:

- Trigger efficiency
- Single track acceptance
- 2 tracks acceptance

Central Hadronic State Analysis $\mathrm{M}\left(\pi^{+} \pi^{-}\right)$vs $\mathrm{P}_{\mathrm{t}}(\mathrm{X})$ for 1960 GeV

CDF Run II Preliminary

Central Hadronic State Analysis $\mathrm{M}\left(\pi^{+} \pi^{-}\right)$vs $\mathrm{P}_{\mathrm{t}}(\mathrm{X})$ for 1960 GeV

CDF Run II Preliminary

Central Hadronic State Analysis $\mathrm{M}\left(\pi^{+} \pi^{-}\right)$vs $\mathrm{P}_{\mathrm{t}}(\mathrm{X})$ for 1960 GeV

CDF Run II Preliminary

Central Hadronic State Analysis M $\left(\pi^{+} \pi^{-}\right)$for 1960 GeV

\rightarrow Broad continuum below $1 \mathrm{GeV} / \mathrm{c}^{2}$
\rightarrow Cusp at $1 \mathrm{GeV} / \mathrm{c}^{2}$
\rightarrow Resonant enhancement around $1.0-1.5 \mathrm{GeV} / \mathrm{c}^{2}$ dominated by $\mathrm{f}_{2}(1270)$

Central Hadronic State Analysis M $\left(\pi^{+} \pi^{-}\right)$for 1960 GeV and 900 GeV

Indications of structure up to $2.4 \mathrm{GeV} / \mathrm{c}^{2}$

CDF Run II Preliminary

Non-exclusive background Same sign sample

- The events with two same charge tracks: 6.1\% (900 GeV) and 7.1\% (1960 GeV) - Sign of non-exclusive background with 2 or more undetected charged particles: \rightarrow very low pT (no reconstructed track and calorimetric E above the noise level)
\rightarrow very forward
CDF Run II Preliminary

The $M\left(\pi^{+} \pi^{*}\right)$ distribution for ++/- - pairs is featureless
\rightarrow But! indication of a similar background from $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$events in $\pi^{+} \pi^{-}$sample
\rightarrow No subtraction

Non- $\pi^{+} \pi^{-}$background

CDF Run II Preliminary

ToF counter information used (coverage in $|\eta|<0.9$)
For $|\eta|<1.3: 67 \%$ of the pairs have both particles identified
$\rightarrow \pi^{+} \pi^{-}$pairs - 89\%
For $|\eta|<0.7: 90 \%$ of the pairs have both particles identified
\rightarrow No significant change in the composition
No non- $\pi^{+} \pi^{-}$background subtraction

Conclusions

- We have measured $\pi^{+} \pi^{-}$pairs between large rapidity gaps at the Tevatron, which should be dominated by double pomeron exchange.
- Contribution of non- $\pi^{+} \pi^{-}$pairs background and nonexclusive background is small
- The mass spectra show several structures:
- Broad continuum below 1 GeV/c²,
- Sharp drop at $1 \mathrm{GeV} / \mathrm{c}^{2}$
- Resonant enhancement around $1.0-1.5 \mathrm{GeV} / \mathrm{c}^{2}$.
- This is the only measurement from the Tevatron, and has much higher statistics than preliminary data from the LHC experiments.

Backup slides

Acceptance calculation

Model independent analysis

Kinematics cuts:

- $P_{t}(\pi)>0.4 \mathrm{GeV} / \mathrm{c}$
- $|\eta(\pi)|<1.3$
- $|y(X)|<1.0$

3 components:

- Trigger efficiency
- Single track acceptance
- 2 tracks acceptance

Trigger efficiency

1. Sample of min-bias data, good quality isolated (no other tracks in cone with $\mathrm{R}=0.4$) tracks.
2. Checking how often they fired 0,1 , 2 or more trigger towers (>= 4 bits) in 3×3 box around track extrapolation.
3. Trigger efficiency composed from those 3 probability distributions (which are functions of P_{t} and η)

Trigger efficiency

Probability of triggering 2 or more towers in the central detector by two independent tracks „a" and „b":
$\varepsilon=\mathrm{P}_{2}(\mathrm{a})+\mathrm{P}_{1}(\mathrm{a})^{*}\left[\mathrm{P}_{1}(\mathrm{~b})+\mathrm{P}_{2}(\mathrm{~b})\right]+\mathrm{P}_{0}(\mathrm{a})^{*} \mathrm{P}_{2}(\mathrm{~b})$
P_{0} - probability of triggering no towers

	$P_{2} b$	$P_{1} b$	$P_{0} b$
$P_{2} a$	\mathbf{X}	\mathbf{X}	\mathbf{X}
$P_{1} \mathrm{a}$	\mathbf{X}	\mathbf{X}	
$P_{0} \mathrm{a}$	\mathbf{X}		

P_{1} - probability of triggering one tower
P_{2} - probability of triggering two or more towers

Trigger efficiency

CDF Run II Preliminary

CDF Run II Preliminary

Single track acceptance

1. Single pion generation, flat in phi
2. Acceptance as a function of Pt(track) and eta

- Probability that track will be reconstruced at all
- Probability that track will pass all single track quality cuts

2 tracks cuts acceptance

Cuts:

- 3D opening angle
- y of central state
- Separation
- ΔZ_{0}

Based on J=0 phase space model

All previous cuts applied

CDF Run II Preliminary
 before

Invariant mass distribution

CDF Run II Preliminary

Partial wave analysis

CDF Run II Preliminary $\quad P_{t}(\pi)>0.4 \mathrm{GeV} / \mathrm{c},|\mathrm{m}(\pi)|<1.3,|y(X)|<1.0$

Partial wave analysis

Partial wave analysis

CDF Run II Preliminary

CDF Run II Preliminary

CDF Run II Preliminary

Partial wave analysis

Comparison of data/MC s-wave $\cos (\theta)$ distributions H0 : $\cos (\theta)$ distribuants for data and s-wave MC are the same (in mass bins)

- H1 : not H0.
- Test type: Smirnow
- Test statistics: λ Kolmogorov

Partial wave analysis

If p-value is smaller then 0.05 we reject the $\mathrm{H} 0(\mathrm{~s}=0)$ in favour of H 1 on the $95 \% \mathrm{CL}$ If p-value is greater then 0.05 we cannot reject the null hypothesis $\mathrm{H} 0(\mathrm{~s}=0)$ on the 95% CL

