
DOCUMENTATION AMBSLP

AUTHOR: DANIEL MAGALOTTI

REVISION 1: PAOLA GIANNETTI, AUGUST 2014

REVISION 2: PANOS NEROUTSOS, OCTOBER 2014

REVISION 3: CALLIOPE-LOUISA SOTIROPOULOU, FEBRUARY 2015 – SYNC MODULE

REVISION 4: PAOLA, MARCH 2015 –LAMB INFOS, SOME REGISTER ISSUES, LOOP

DESCRIPTION.

FIRMWARE AMBFTK SYSTEM
1 The AMBSLP logic ... 3

1.1 HIT FPGA .. 5

1.1.1 Implemented logic ... 5

1.1.2 GTP Serial Link Mapping .. 7

1.1.3 Spy Buffers ... 8

1.1.4 Synchronization module .. 9

1.1.5 HIT Vme Registers and memories .. 12

1.2 Control FPGA ... 20

1.2.1 Logic block .. 20

1.2.2 Error monitor logic and freeze signal ... 22

1.2.3 Control Vme registers .. 22

1.3 VME Chip ... 23

1.3.1 VME chip registers ... 23

1.4 Road FPGA ... 25

1.4.1 GTP Serial Link Mapping .. 25

1.4.2 Implemented logic ... 26

1.4.3 ROAD VME registers ... 27

2 AMBSLP JTAG CHAIN .. 32

2.1 AMBSLP V1 .. 32

2.2 AMBSLP V2 .. 32

3 LAMB .. 33

3.1 LAMB Chain configuration ... 33

3.2 Input distribution chain .. Error! Bookmark not defined.

3.3 Output collection chaiN.. Error! Bookmark not defined.

3.4 JTAG connection chain .. 33

4 VME commands ... 34

4.1 Internal AMBoard loop command .. 34

4.1.1 Simulation of the AM bank to produce roads ... 37

1 THE AMBSLP LOGIC

Figure 0a: the AMBSLP version 1 and the data traffic in the motherboard..

A 9U-VME board filled with 64 AM chips can hold 8 million patterns. To simplify input/output
operations, the AM chips are grouped into AM units composed of 16 chips each, called Little
Associative Memory Boards (LAMB, Figure 0b). A 9U-VME board has been implemented to hold 4
such units. Figure 0a shows the motherboard. The LAMB and the motherboard communicate
through a high frequency and high pin-count connector placed in the center of the LAMB. A
network of high speed serial links handles the data distribution from the input (the high density P3
connector on the bottom-right side of Figure 1a, called P3) to the 64 AM chips and back to the
connector, for a total of ~750 point-to-point connections. Twelve input serial links (in yellow) carry
the silicon data from the P3, and 16 output serial links (4 links from each LAMB represented by a
red arrow in the figure) carry the fired patterns from the LAMBs to P3.

Figure 0b: The LAMB and the input data distribution to AM chips.

The data traffic is handled by 2 Xilinx FPGAs, the HIT and ROAD chips. They are 2 Xilinx-Artix7
which have 16 Gigabit Transceivers (GTP) each providing ultra-fast data transmission. HIT handles
the input data, while ROAD in the red box near the P3 handles the output data. Two separate
Xilinx Spartan-6 FPGAs implement the data control logic. The 12 input serial links are merged into
the 8 buses received by each AM chip, one bus for each detector layer used for pattern matching.

HIT

Road

LAMB0

LAMB1LAMB3

LAMB2

CTRL

VME

P3

The data rate is very challenging. A huge quantity of silicon data must be distributed at high rate (2
Gb/s on each serial link, for a total of 24 Gb/s maximum rate), with extremely large fan-out. Events
are fed to the board at a maximum rate of 100 kHz. Each 10µs on average, 8 thousand words (16
bits) have to reach the patterns through 8 buses and a similarly large number of output words
must be collected and sent back to the P3 (32 Gb/s maximum output rate). Each input word has to
reach the 8 million patterns on the board.

The large input fan-out is obtained through 3 levels of serial fan-out chips to reach each of the 64
AM chips and a very powerful data distribution tree inside each AM chip itself. The AM chip
compares 8 input words with 128k locations every 10 ns. The first level of 1:2 fan-out is visible
inside the 2 yellow boxes of Figure 1a, which distribute each of the 8 buses to the 4 LAMBs. The
other two levels are placed on the LAMBs and are visible in Figure 0b. Each LAMB has 40 1:4 fan-
outs. The 8 red ones around the central connector (orange box) replicate each of the 8 incoming
buses 4 times to make them available to a quartet of AM chips. For the input data distribution AM
chips are organized into vertical quartets as shown by the blue dotted lines in Figure 6. The second
level of fan-outs (yellow little squares) replicates again the bus 4 times, one for each single AM
device in the quartet. The placement of chips on the LAMB has been studied and optimized with
the goal of minimizing the crossing of the serial links.

Figure 0c shows how the output words are collected from the 16 AM chips in 4 daisy chains. Each
AM device has the capability to receive outputs from other two AM chips and merge them
internally with patterns that fired in the chip itself. Each daisy chain has a single output that goes
directly to the connector. Each quartet also shares a 100 MHz low jitter clock necessary for the 11
serial links handled by each AM chip. The oscillator and the 1:4 fan-out for its output distribution
are placed exactly in the middle of the quartet in the red boxes.

Figure 0c: Output data collection from AM chips.

1.1 HIT FPGA

The HIT chip (Artix7 xc7a200t) manages the distribution of the input hits
coming from the the detector (4 SCT layers and the 4 PIXEL layers) to be

downloaded in the AMChips in parallel on 8 independent buses. The Hit chip
(blue box in fig 1), receives 12 serial buses at 2Gbps from the AUX board,

through the external P3 connector (from the AUX board). Four buses are for
the SCT layers and eight buses are for the PIXEL layers (each pixel bus is

duplicated to fully exploit the P3 connector and because we expect higher data
bandwidth needs from Pixel modules). A merge module combines each pixel

couple of buses to provide a single output to be sent to the LAMBs. In
conclusion HIT chip sends only four buses for both SCT and Pixel layers to the

AMChips. Each HIT output bus is duplicated, one is distributed by fanouts
(yellow boxes in figure 1) to the 2 LAMBs on the top half of AMBSLP (LAMB0

and LAMB2) and one is distributed (pink boxes in figure 1) to the 2 LAMBs on
the bottom half of AMBSLP (LAMB1 and LAMB3).

FIGURE 1: HIT DISTRIBUTION TO LAMBS

The internal logic implemented in the FPGA for each link is:

 a monitoring module (spy buffer) to control the data flow;

 a module to check the error in the data;

 a module to emulate the data flow, loading data from VME in a writable
FIFO;

1.1.1 IMPLEMENTED LOGIC

The architecture of the logic implemented in the HIT FPGA is shown in figure 2

that reports the architecture for a single bus. The logic is the same for all the

HIT_BUS0 SCT0

HIT_BUS1 SCT1

HIT_LAMB_BUS0_SCT0_top

HIT_LAMB_BUS1_SCT1_top

NB6L14S

HIT_LAMB0_BUS0

HIT_LAMB2_BUS0

HIT_LAMB1_BUS0

HIT_LAMB3_BUS0
HIT_BUS2 SCT2

HIT_BUS3 SCT3

HIT_BUS4 Pix0

HIT_BUS5 Pix1

HIT_BUS6 Pix2

HIT_BUS7 Pix3

HIT_BUS8 Pix4

HIT_BUS9 Pix5

HIT_BUS10 Pix6

HIT_BUS11 Pix7

HIT

FPGA

NB6L14S

HIT_LAMB_BUS0_SCT0_bot

NB6L14S

HIT_LAMB0_BUS1

HIT_LAMB2_BUS1

HIT_LAMB1_BUS1

HIT_LAMB3_BUS1
NB6L14S

HIT_LAMB_BUS1_SCT1_bot

HIT_LAMB_BUS7_Pix3_top
NB6L14S

HIT_LAMB0_BUS7

HIT_LAMB2_BUS7

HIT_LAMB1_BUS7

HIT_LAMB3_BUS7
NB6L14S

HIT_LAMB_BUS7_Pix3_bot

12 input buses. For each couple of Pixel buses there is an additional multiplex

that merges the couple of inputs into a single output.

FIGURE 2: DATA PROCESSING LOGIC FOR EACH SERIAL LINK RECEIVED BY HIT CHIP

The input serial link is managed by the GTP Transceiver module. The 32 bit

input bus is codified with the 8B/10B encoding, so the width of the bus
becomes 40bits. They are transferred at 50MHz rate, so the frequency of the

link is 2Gbp.

A simple protocol is used between the AUX card and the AMBSLP. We use two
types of control words: idle words (BCBC1C1C, K character F) are sent when

no data valid is present on the input bus; an End Event word (F7RRNNNN, K
character 8) is sent when data words of an event are finished.

To summarize the data flow in input to the AMBSLP

Type of word Value K character

IDLE WORD BCBC1C1C 1111

HITS DATA XXXXYYYY

XXXXYYYY

0000

0000

End Event WORD F7RRNNNN 1000

where the XXXX and YYYY are two 16-bit hits that are transmitted in the same

word;RR are bits reserved for error codes , NNNN is the ID number of the
specific event under process. The protocol used between HIT chip and the

AMchip is similar and is described in the following table:

Type of word Value K character

IDLE WORD BCBC1C1C 1111

HITS DATA XXXXYYYY

XXXXYYYY

0000

0000

End Event WORD F7RRNNNN 1000

FIFO

Dual
Clock

GTP
RX

Module

Data
Processing

&
Monitoring

GTP
TX

Module FIFO
Dual
Clock

HIT_BUS HIT_BUS

SYSTEM_CLOCK

RX_GTP_CLOCK TX_GTP_CLOCK

Parallelized

Data

Parallelized

Data

FIFO
VME

Add the encoding of the
opcode to send to

AMchip after the init
event

Looking at figure 2 from the left, the “GTP module” is the first part of the

process. It de-serializes the incoming bitstream to send to the output a
parallelized data bus (the 32 bits data word and the 4-bit control k word

described in the tables above) and the recovery clock. An elastic buffer is

enabled in the GTP module to help the module to synchronize the internal clock
domain .

The output parallel bus is stored in a “Dual clock FIFO”. The writing clock is the
recovery clock of the GTP module, the depth of the FIFO is 1024k words and

the program full signal is used as hold signal to be sent to the AUX card to stop
the data flow if the Fifo becomes full. The output of the FIFO is read with the

system clock signal.

A “VME FIFO”, 8Kword depth, has been added to perform standalone tests,

downloading data from VME. It is written by the VME module. A mux,
controlled by the TMODE signal, selects the normal data flow from the GTP

module (TMODE-0) or the test data flow from the VME FIFO (TMODE=1).

The “Data processing & monitoring module” controls the event flow in the chip.

It looks for the end event word (data word = F7RRNNNN and control
word=1000) and waits for the initialization signal in order to enable the

processing of the next event. The monitoring module is used to copy the input

data in a memory called spy buffer. Itis realized with a circular buffer. A logic
is implemented to freeze the spy buffer in case of error and the content of the

memory is read by the VME interface. The depth of the spy buffer memory is
8Kword of 16 bits.

The module that controls the transmitter GTX is again composed by a dual
clock FIFO and a logic to insert the idle word when no data valid is present on

the bus.

1.1.2 GTP SERIAL LINK MAPPING

A list of the input and output data serial link mapping is reported in table 1The

IO pad need to be placed.

TABLE 1

Data Bus PAD QUAD RX TILE TX TILE AUX
Processor P N

SCT_HIT_0 AJ13 AK13 113 3 -

SCT_HIT_1 AJ19 AK19 213 1 -

SCT_HIT_2 AJ21 AK21 213 3 -

SCT_HIT_3 AL20 AM20 213 2 -

PIX_HIT_0 AL16 AM16 113 1 -

PIX_HIT_1 AJ17 AK17 113 0 -

PIX_HIT_2 F13 E13 116 0 -

PIX_HIT_3 F19 E19 216 2 -

PIX_HIT_4 F17 E17 116 3 -

PIX_HIT_5 D16 C16 116 2 -

PIX_HIT_6 D20 C20 216 1 -

PIX_HIT_7 F21 E21 216 0 -

RX_LAMB_0 D18 C18 216 3 -

RX_LAMB_0 AL18 AM18 213 0 -

RX_LAMB_0 F15 E15 116 1 -

RX_LAMB_0 AJ15 AK15 113 2 -

HIT_A_0 B13 A13 116 - 0

HIT_A_1 D14 C14 116 - 1

HIT_A_2 B15 A15 116 - 2

HIT_A_3 B17 B17 116 - 3

HIT_A_4 B23 A23 216 - 3

HIT_A_5 D22 C22 216 - 2

HIT_A_6 B21 A21 216 - 1

HIT_A_7 B19 A19 216 - 0

HIT_B_0 AN19 AP19 213 - 3

HIT_B_1 AN21 AP21 213 - 2

HIT_B_2 AL22 AM22 213 - 1

HIT_B_3 AN23 AP23 213 - 0

HIT_B_4 AN17 AP17 113 - 0

HIT_B_5 AN15 AP15 113 - 1

HIT_B_6 AL14 AM14 113 - 2

HIT_B_7 AN13 AP13 113 - 3

MGTREFCLK0

X1Y1

H16 G16 116 - -

MGTREFCLK0

X0Y1

H18 G18 216 - -

MGTREFCLK1

X1Y0

AG16 AH16 113 - -

MGTREFCLK1

X0Y0

AG18 AH18 213 - -

1.1.3 SPY BUFFERS

Each Spy Buffer is composed by a circular memory and a status register. The

spy buffer memory is attached to the bus to monitor the incoming data. It is a

dual port memory: the Spy buffer cannot be written by VME, it is Read Only

memory. The write operation is controlled by the port A to store all the words
coming in input during the normal data flow, the read operation is controlled

by port B with VME interface signals.

The status register contains tree information:

 the pointer at the first free address location of the memory;

 the flag of the freeze status;

 the flag of the memory overflowstatus.

A VME write to the status register (data is irrelevant) resets to zero the
pointer, reset the overflow flag, but does not change the freeze status, since it

is controlled by specific logic functions. The freeze bit is Read-Only (check with
Pierluigi).

The memory write operation during the normal data flow is stopped (to
preserve the data inside) when a freeze signal is asserted. The freeze signal is

a global signal for all the Spy Buffers in the board and can also be propagated
to the upstream board. These are the particular conditions that generate the

freeze signal:

 when an error is detected on a board freeze is asserted to all the Spy

Buffers on that board; it is also sent to the board immediately

upstream to freeze its Spy Buffers since the error could be generated
by that board;

 there is a bit in the End Event word that tells all boards to freeze their
Spy Buffers after processing that specified event.

This last option enables events to be read out and compared with simulation
to ensure that there aren’t subtle problems in the hardware. After freeze is set,

no data can be written into the memory and the content of the memory is read
through VME access.

1.1.4 SYNCHRONIZATION MODULE

The synchronization module (LossOfSync) receives the 12 Hit Bus data

input and its task is to identify whether the 12 Input Buses carry synchronized
data (the same event -EventID- appears in all 12 buses). The module traces

the End Event word at each Hit Bus, produces an End Event Reference Word
and compares this value to event id in every input bus to find if and which of

those buses are different in comparison to the reference.

The synchronization module consists of:

 the Majority Vote module that produces the End Event Reference
Word

 the Sync Module that implements all the logic for the loss of
synchronization detection

 the control module (FSM)

Majority Vote Module

The End Event Reference Word is calculated using the majority vote

module. This module receives all the signals from the Hit buses and a data
valid signal that is active when all input buses contain End Events. wordsIt

then implements a comparison of all the End Event words and produces a

reference word that is the most common Event ID among the Hit buses.
Additionally it reports in how many buses the reference word exists. The

module is designed to accept 12 or 8 input bus input by using a switch signal.

FSM Module

The FSM block diagram that describes the functionality of the module is
shown in the figure below.

Analysis of the FSM states:

 Reset: The system starts from here only when init=’1’ (RESET=’1’).

 Wait_ee: waiting for the end event tag and data valid flags from the

FIFOs. If a set of values has the end event tag on every bus as well as

all the data valid signals on all FIFOs are valid (‘1’), then we proceed

with the rest of the process, that is calculate the End Event Reference

word.

 Calc_ref: Lasts 1 clk cycle. Calculates the End Event Reference word.

The end event reference word is the most common value among the

HitBuses.

 Calc_ref2: The process of comparison between the hitbuses lasts two

clk cycles.

 Get_reference: The state where the end event reference word is

valid (flag signal parse_reference). At this state the ee_flag_cc signal

is sent to the Control Chip.

 Increment: In this state we increment the appropriate counters

which correspond to the HitBuses that don’t have the same value with

the end event reference word (HBSn_LoS_Counters).

 Idle_ee: Waiting to the init_event_control (INIT_HIT_REG) signal

from the Control Chip.

 Init_event: Initialize all the registers except for the counters and

goes back to the wait_ee state.

The output of the Sync Module is valid only when "data_valid" is

asserted.

Sync Module

The sync module accepts all the words from the Hit buses, the End Event

Reference word from the Majority Vote module and the control signals from the
FSM. The module identifies whether there is a loss of syncronization and

increases the values of the counters that correspond to the bus that has lost
sync.

Synchronization Module (Top level)

List of Input and Output Signals for the Sync Module Top Level Entity:

Input signals:

 Clk: clock

 init : Master reset.

 sw12to8 : ‘0’ for 12 Hit Bus input, ‘1’ for 8 Hit Bus Input.

 init_event_control : Initialization signal that comes from the Control

Chip.

 HitBusSyncN (where N from 0 to 11) 16-bit bus width: Input Data from

the Hit buses.

 Data_Input_FifoN (where N from 0 to 11): Data valid flag on each input

FIFO.

 Endeventtag (12-bit) : A single cycle pulse that indicates the end event

tag for each hit bus.

Output signals:

• EndEventRef : End Event Reference value. Read only when data_valid is

‘1’.

• HBSn_LoS_Counter (where n from 0 to 11): Counters for the losses of

synchronization on each bus respectively.

• ee_comp_rslt: Registered signal that indicates whether all the End Event

Words have the same value. The signal is ‘1’ when there is end event

and equal values of the HitBuses.

• ee_flag_reg: Indicates the presence of an end event on all buses (value

‘1’ in the end event tag for all the HIT buses).

• ee_error_flag: The signal arises if only the end event has arrived in all

HitBuses and at least one comparison is not equal.

• ee_flag_cc: End Event signal that goes to the Control Chip

• data_valid: Indicates whether all the module output data (end event

reference word and error counters) are valid.

• compare_eeref_hitbus (12-bit): compares each hitbus with the end event

reference word. '0' when they are equal, '1' when they are not.

• max_common_val: Signal that represents how many times the

EndEventRef is repeated among the Hit Buses

1.1.5 HIT VME REGISTERS AND MEMORIES

In the Table 2 the list of the internal register in the HIT chip is reported.

TABLE 2: THE ADDRESSER FOR THE VME REGISTER OF THE HIT CHIP

ADDR FPGA

[26:2]

ADDR AMBFTK

[31:0]
DESCRIPTION N of bits Type

000800 xx002000 Fifo_SCT_link0 32 R/W

000801 xx002004 isK_SCT_linko 4 R/W

000802 xx002008 Fifo_SCT_link1 32 R/W

000803 xx00200C isK_SCT_link1 4 R/W

000804 xx002010 Fifo_SCT_link2 32 R/W

000805 xx002014 isK_SCT_link2 4 R/W

000806 xx002018 Fifo_SCT_link3 32 R/W

000807 xx00201C isK_SCT_link3 4 R/W

000808 xx002020 Fifo_PIX_link0 32 R/W

000809 xx002024 isK_PIX_linko 4 R/W

00080A xx002028 Fifo_PIX_lin1 32 R/W

00080B xx00202C isK_PIX_link1 4 R/W

00080C xx002030 Fifo_PIX_link2 32 R/W

00080D xx002034 isK_PIX_link2 4 R/W

00080E xx002038 Fifo_PIX_link3 32 R/W

00080F xx00203C isK_PIX_link3 4 R/W

000810 xx002040 Fifo_PIX_link4 32 R/W

000811 xx002044 isK_PIX_link4 4 R/W

000812 xx002048 Fifo_PIX_lin5 32 R/W

000813 xx00204C isK_PIX_link5 4 R/W

000814 xx002050 Fifo_PIX_link6 32 R/W

000815 xx002054 isK_PIX_link6 4 R/W

000816 xx002058 Fifo_PIX_link7 32 R/W

000817 xx00205C isK_PIX_link7 4 R/W

000818 XX002060

SPY_SCT_link0_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

00819 XX002064

SPY_SCT_link1_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

0081A XX002068

SPY_SCT_link2_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

0081B XX00206C

SPY_SCT_link3_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

0081C XX002070

SPY_PIX_link0_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

0081D XX002074

SPY_PIX_link1_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

0081E XX002078

SPY_PIX_link2_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

0081F XX00207C

SPY_PIX_link3_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

00820 XX002080

SPY_PIX_link4_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

00821 XX002084

SPY_PIX_link5_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

00822 XX002088

SPY_PIX_link6_STATUS

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

16
RO

WR clear

00823 XX0028C SPY_PIX_link7_STATUS 16 RO

Bit 12-0: pointer

Bit 14: overflow

Bit 15: freeze

WR clear

00824 XX002090 HOLD_FLAG 12 RO

00825 XX002094

HIT_FIRMWARE_VERSION

Bit 0: tmode

Bit 3-1 NOT USED”

Bit 7-4 version

Bit 11-8 year

Bit 15-12 PllLock

 Bit 19-16 PllLostRef

Bit 23-20 isKstable

Bit 27-24 isKchaged

20 RO

00826 XX002098

HIT_CONTROL

Bit 15-0: SET operation

Bit 31-16: CLEAR operation

Bit 0: StartReadFifoVME

Bit 1: LoopFifoVME

3 RW

00827 XX00209C

PIX_ALIGNMENT_STATUS

Bit 3-0: gt0_quad113

Bit 7-4: gt0_quad116

Bit 11-8: gt0_quad213

Bit 15-12: gt0_quad216

16 RO

00828 XX0020A0

PIX_RESETDONE_STATUS

Bit 3-0: tx_resetdone_quad113

Bit 7-4: rx_resetdone_quad113

Bit 11-8: tx_resetdone_quad116

Bit 15-12: rx_resetdone_quad116

Bit 19-16: tx_resetdone_quad213

Bit 23-20: rx_resetdone_quad213

Bit 27-24: tx_resetdone_quad216

Bit 31-28: rx_resetdone_quad216

32 RO

00829 XX0020A4 EMPTY_FLAG 12 RO

0082A XX0020A8

CONFIGURE TEST

Bit 3-0: Board Version

 Bit 6-4: PRBS pattern selection

Bit 8: PRBS enable checker

RW

NOT

RESET

BY INIT

0082B XX0020AC

CONFIGURE POLARITY

Bit 15-0: TX polarity

213-216-116-113

Bit 31-16: RX polarity

32

RW

NOT

RESET

BY INIT

0082C XX0020B0

A_LOSSOFSYNCH0

Bit 7-0: sct link 0

Bit 15-8: sct link 1

Bit 23-16: sct link 2

Bit 31-24: sct link 3

32 RO

0082D XX0020B4

A_LOSSOFSYNCH1

Bit 7-0: pix link 0

Bit 15-8: pix link 0

Bit 23-16: pix link 1

Bit 31-24: pix link 1

32 RO

0082E XX0020B8

A_LOSSOFSYNCH2

Bit 7-0: pix link 2

Bit 15-8: pix link 2

Bit 23-16: pix link 3

Bit 31-24: pix link 3

32 RO

0082F xx0020BC K WORD MONITORING

00830 XX0020C0 TIMER_PIX - -

00831 XX0020C4

ERROR_PIX

Bit 0: Error flag

Bit 1: Error critical

00832 xx0020C8

PRBS ERROR LINK 113

Bit 7-0: gt0

Bit 15-8: gt1

Bit 23-16: gt2

32 RO

Bit 31-24: gt3

00833 xx0020CC

PRBS ERROR LINK 116

Bit 7-0: gt0

Bit 15-8: gt1

Bit 23-16: gt2

Bit 31-24: gt3

32 RO

00834 xx0020D0

PRBS ERROR LINK 213

Bit 7-0: gt0

Bit 15-8: gt1

Bit 23-16: gt2

Bit 31-24: gt3

32 RO

00835 xx0020D4

PRBS ERROR LINK 216

Bit 7-0: gt0

Bit 15-8: gt1

Bit 23-16: gt2

Bit 31-24: gt3

32 RO

00836 xx0020D8 DEGUB_DISABLE_HOLD_HIT 12 RW

00837 xx0020DC
DEBUG_FORCE_HOLD_HIT

Disable hold has priority
12 RW

00838 xx0020E0

PRBS CHECKER LINK 113

Bit 7-0: gt0

Bit 15-8: gt1

Bit 23-16: gt2

Bit 31-24: gt3

32 RO

00839 xx0020E4

PRBS CHECKER LINK 116

Bit 7-0: gt0

Bit 15-8: gt1

Bit 23-16: gt2

Bit 31-24: gt3

32 RO

0083A xx0020E8

PRBS CHECKER LINK 213

Bit 7-0: gt0

Bit 15-8: gt1

Bit 23-16: gt2

32 RO

Bit 31-24: gt3

0083B xx0020EC

PRBS CHECKER LINK 216

Bit 7-0: gt0

Bit 15-8: gt1

Bit 23-16: gt2

Bit 31-24: gt3

32 RO

0083C

00FFF

xx0020F0

xx003FFC

In the Table 2 there is the list of the memory in the HIT chip

ADDR FPGA

[26:2]

ADDR AMBFTK

[31:0]
DESCRIPTION N of bits Type

S: 20000

E: 21FFF

S: XX080000

E: XX087FFC
ISPY_SCT0 32 bit RO

S: 22000

E: 23FFF

S: XX088000

E: XX08FFFC
ISPY_SCT1 32 bit RO

S: 24000

E: 25FFF

S: XX090000

E: XX097FFC
ISPY_SCT2 32 bit RO

S: 26000

E: 27FFF

S: XX098000

E: XX09FFFC
ISPY_SCT3 32 bit RO

S: 28000

E: 29FFF

S: XX0A0000

E:XX0A7FFC
ISPY_PIX0 32 bit RO

S: 2A000

E: 2BFFF

S: XX0A8000

E: XX0AFFFC
ISPY_PIX1 32 bit RO

S: 2C000

E: 2DFFF

S: XX0B0000

E: XX0B7FFC
ISPY_PIX2 32 bit RO

S: 2E000

E: 2FFFF

S: XX0B8000

E: XX0BFFFC
ISPY_PIX3 32 bit RO

S: 30000

E: 31FFF

S: XX0C0000

E:XX0C7FFC
ISPY_PIX4 32 bit RO

S: 32000

E: 33FFF

S: XX0C8000

E: XX0CFFFC
ISPY_PIX5 32 bit RO

S: 34000

E: 35FFF

S: XX0D0000

E: XX0D7FFC
ISPY_PIX6 32 bit RO

S: 36000

E: 37FFF

S: XX0D8000

E: XX0DFFFC
ISPY_PIX7 32 bit RO

S: 38000

E: 3FFFF

S: XX0E0000

E: XX0FFFFC
NOT USED 32 bit RO

1.2 CONTROL FPGA

The control chip manages the event processing in the AMBSLP, both for the
input hit distribution and the road readout. Control chip receive the END event

from both HIT and ROAD chips and send back the INIT event signal. An
additional bus of 32 lines is available between Control and the two FPGAs for

any possible future need. It is already partially used to communicate the event
ID and information about the errors. Control chip is also used to propagate

commands, control signals to both HIT and ROAD: it makes the final decision
to assert freeze, stopping all the Spy Buffers, it propagates INIT and TMODE

asserted by VME etc. etc. Figure 3 summarizes all the connections between
Control and the other parts of the system.

 Figure 3: connections between Control and the other chips

1.2.1 LOGIC BLOCK

The logic that controls the event processing is organized in two Finite State

Machines, one for the HIT distribution and one for the ROAD readout.
Communication between the two FSMs controls the correct data processing

inside the AMchip: during the loading of the hits of the N+1 event, the road of
the event N are read out.

SCT

PIX

ROAD

HIT ee

ro
ad

_
ee

Init

Fr
ee

ze
_

co
d

e

Freeze_code

Not defined communication
(point-to point)

Init_VME

AUXFTK

L0 L2 L3 L4

h
o

ld

ro
ad

s

Hits

HIT

CONTROL

INIT_Event
Stop Spy Buffers
….

TMODE_VME

Figure 4 shows the FSM diagrams.

Figure 4

Gloabal INIT puts the two FSMs in the initial state. When Global INIT is
removed both FSMs move to the next state.

Looking at the two FSM: in the LOAD HIT state the HIT FSM waits until the End
Event (event N) is received, so all the hits have been sent to the AMchip;

When the HIT FSM goes to the next state, DONE HIT, also the roads of the
previous event have been finished since the ROAD FSM is in the state DONE

ROAD, so INIT_event is asserted to the AMchips, the new event ID is stored
and after a programmable number of wait cycles the HIT FSM goes back to the

LOAD HIT state. The ROAD FSM goes to the next state “SEND ROAD” at the
same time the HIT FSM transits to the DONE HIT state. Control chip enables

the “send ROADs” signal to ROAD chip (event N) that receive Roads from the
LAMBs and sends them to the AUX board. When the Roads are finished ROAD

sends the end event word to AUX, end event signal to Control chip and the

FSM transits to the next state to wait a programmable number of clock cycles,
and after that it goes back to DONE ROAD state where the FSM waits the

loading of HITs of the next event. So also the Road FSM is ready to process
the next event.

Global

INIT

LOAD

HIT

EV N

Wait
few

cycles

Global
INIT

DONE

ROAD
EV N-1

Wait
few

cycles

DONE

HIT EV N

INIT_EV

SEND

ROAD

NOT Global
INIT

HIT End Event N

&&

DONE ROAD N-1

DONE

HIT EV N

Road End Event

NOT Global
INIT

1.2.2 ERROR MONITOR LOGIC AND FREEZE SIGNAL

1.2.3 CONTROL VME REGISTERS

In the following table is the list of the control register

ADDR FPGA

[26:2]

ADDR AMBFTK

[31:0]
DESCRIPTION N of bits Type

01800 XX006000

CONTROL_STATUS_REGISTER

Bit 3-0: version

Bit 7-4 year

Bit 11:8: FSMState

Bit 15:12: Presence LAMB

RO RO

01801 XX006004 HOLD FLAGS RO RO

01802 XX006008 Error Severity Register R/W

01803 XX00600C

PRESENCE_LAMB

Bit 0: LAMB 0

Bit 1: LAMB 1

Bit 2: LAMB 2

Bit 3: LAMB 3

4 RO

01804 XX006010 FREEZE RW 1

01805 XX006014

MASK_EE

Bit 0: mask HIT

Bit 1: mask ROAD

RW 2

01806 XX006018

01807 XX00601C

1.3 VME CHIP

We describe the AMBSLP slave interface. The VME interface controls registers and memories of

three different FPGA: HIT, ROAD and CONTROL. In the different FPGAs we have to address

both the registers and the memories so we divide the address space in the following way

The GREEN is to identify the internal register

The VIOLET is to identify the internal AMBSLP memories

The YELLOW is to identify which memory of the possible 16 in total

The RED is reserved for the AUX card

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

VME INFERFACE REGISTER 0x00 – 0x3FF

0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x x x x x x x

HIT REGISTER 0x40 – 0x7F

0 0 0 0 0 0 0 0 0 0 0 0 0 1 x x x x x x x x x x x

ROAD REGISTER 0x80 – 0xBF

0 0 0 0 0 0 0 0 0 0 0 0 1 0 x x x x x x x x x x x

CONTROL REGISTER 0xC0 – 0xFF

0 0 0 0 0 0 0 0 0 0 0 0 1 1 x x x x x x x x x x x

HIT MEMORY 0x10000

0 0 0 0 0 0 0 1 0000 to 1111 x x x x x x x x x x x x x

ROAD MEMORY 0x20000

0 0 0 0 0 0 1 0 0000 to 1111 x x x x x x x x x x x x x

1.3.1 VME CHIP REGISTERS

ADDR FPGA

[26:2]

ADDR AMBFTK

[31:0]
DESCRIPTION N of bits Type

000000 XX000000 STATUS_REGEGISTER_VME R

000001 XX000004 INIT 1 W

000002 XX000008 TMODE 1 R/W

000003 XX00000C TCK_ENABLE 1 R/W

000004 XX000010 TEST32BIT 32 R/W

Not yet impl. XX000014 TMS_FPGA 1 R/W

Not yet impl. XX000018 TDI - FPGA 1 R/W

Not yet impl. XX00001C TDO - FPGA 1 RO

000008 XX000020 TMS_BSCAN 8x4=32 W

000009 XX000024 TDI_BSCAN 8x4=32 W

00000A XX000028 TDO_BSCAN 8x4=32 R

00000B XX00002C TRS_BSCAN 8x4=32 W

1.4 ROAD FPGA

The ROAD chip receives the roads from the LAMBs and send them to the AUX
card. The same chip controls all the 16 links in input and output.

The structure of the logic (see figure 4) is similar to the HIT chip: there are
two FIFOs to solve the asynchronism of the GTP clock with respect to the

system clock. A VME FIFO is also used to be able to download data from VME.

1.4.1 GTP SERIAL LINK MAPPING

A list of the input and output data serial link mapping is reported in the table.
In the last column there is the mapping with the AUX processor. [QUALE E’ LA

DIFFERENZA FRA “ROAD_LAMB3_0” E “ROAD_OUT_L3_0”? QUALE E’ L’INPUT E
QUALE L’OUTPUT?]

TABLE

Data Bus PAD QUAD RX
TILE

TX
TILE

AUX
Process

or
P N

ROAD_LAMB3_0 AJ15 AK15 113 1 - 2_0

ROAD_LAMB3_1 AL18 AM18 213 3 - 4_2

ROAD_LAMB3_2 F13 E13 116 3 - 1_2

ROAD_LAMB3_3 F15 E15 116 2 - 1_1

ROAD_LAMB2_0 F19 E19 216 1 - 1_0

ROAD_LAMB2_1 D18 C18 216 0 - 3_0

ROAD_LAMB2_2 F17 E17 116 0 - 3_1

ROAD_LAMB2_3 D16 C16 116 1 - 1_3

ROAD_LAMB1_0 AJ21 AK21 213 0 - 4_1

ROAD_LAMB1_1 AL20 AM20 213 1 - 4_0

ROAD_LAMB1_2 D20 C20 216 2 - 3_3

ROAD_LAMB1_3 F21 E21 216 3 - 3_2

ROAD_LAMB0_0 AJ19 AK19 213 2 - 4_3

ROAD_LAMB0_1 AJ17 AK17 113 3 - 2_2

ROAD_LAMB0_2 AJ13 AK13 113 0 - 2_1

ROAD_LAMB0_3 AL16 AM16 113 2 - 2_3

ROAD_OUT_L3_0 AN23 AP23 213 - 0

ROAD_OUT_L3_1 AL22 AM22 213 - 1

ROAD_OUT_L3_2 AN21 AP21 213 - 2

ROAD_OUT_L3_3 AN19 AP19 213 - 3

ROAD_OUT_L2_0 AL14 AM14 113 - 1

ROAD_OUT_L2_1 AN15 AP15 113 - 2

ROAD_OUT_L2_2 AN13 AP13 113 - 0

ROAD_OUT_L2_3 AN17 AP17 113 - 3

ROAD_OUT_L1_0 B19 A19 216 - 0

ROAD_OUT_L1_1 B17 A17 116 - 0

ROAD_OUT_L1_2 D22 C22 216 - 2

ROAD_OUT_L1_3 B23 A23 216 - 3

ROAD_OUT_L0_0 D14 C14 116 - 2

ROAD_OUT_L0_1 B21 A21 216 - 1

ROAD_OUT_L0_2 B15 A15 116 - 1

ROAD_OUT_L0_3 B13 A13 116 - 3

ROAD_MGTREFCLK0_X
1Y1_116

H16 G16 116 - -

ROAD_MGTREFCLK0_X
0Y1_216

H18 G18 216 - -

ROAD_MGTREFCLK0_X
1Y0_113

AG16 AH16 113 - -

ROAD_MGTREFCLK0_X
0Y0_213

AG18 AH18 213 - -

1.4.2 IMPLEMENTED LOGIC

In figure 4 there is the architecture of the single link processing module (the

same logic of the HIT chip).

FIGURE 4

The input serial links are managed with the GTP Transceiver module. The 32

bit of the input buses are codified with the 8B/10B encoding, so the width of
the buses became 40bit, and are transferred at 50MHz rate, so the frequency

of the link is 2Gbp.

A simple communication protocol has been used between the AMchip and

ROAD chip: idle word (BCBC1C1C) is sent when no data valid is present on

FIFO

Dual
Clock

GTP
RX

Module

Data
Processing

&
Monitoring

GTP
TX

Module FIFO
Dual
Clock

ROAD_BUS ROAD_BUS

SYSTEM_CLOCK

RX_GTP_CLOCK TX_GTP_CLOCK

Parallelized
Data

Parallelized

Data

FIFO
VME

the bus. After the AMchips receive the INIT event we have to wait a latency

time of N clock cycles to have consecutive roads. The end event of roads is
asserted by ROAD chip on each link when two conditions match: (1) N cycles

have been counted since INIT event and (2) no more consecutive roads are

received from the LAMB.

To summarize the data flow from AMChip to the ROAD chip is:

Type of word Value K character

IDLE WORD BCBC1C1C 1111

ROAD DATA BBAAAAAA 0000

where the BB bit field is the bitmap and AAAAAA bit field is the ROAD ID:

 Bits 18-0 of the AAAAAA field identifie the 512 k patterns inside one
quartet of AMchips (see section 3 describing the LAMB mezzanine) on the

LAMB. The 2 MSBs are the Geographical Address configured in the
AMchip, that is the code that identifies each AMchip in the quartet.

 Bits 20-19 of the AAAAAA field identifie the 4 output links of the LAMB,
that is the 4 quartets of chips on the LAMB.

 Bit 23 of the AAAAAA field is used inside the AUX board to flag the last

road in the event;

The protocol between the ROAD chip and the AUX card is

Type of word Value K character

IDLE WORD 0000BC50 0010

ROAD DATA BBAAAAAA 0000

END EVENT WORD F7RRMMMM 1000

where RR are reserved bits for error codes, MMMM is the event ID.

1.4.3 ROAD VME REGISTERS

In the following table is the list of the internal registers of the ROAD chip

ADDR FPGA

[26:2]

ADDR AMBFTK

[31:0]
DESCRIPTION N of bits Type

0001000 XX004000 Fifo_RoadL0_link0 32 R/W

0001001 XX004004 Fifo_RoadL0_link1 32 R/W

0001002 XX004008 Fifo_RoadL0_link2 32 R/W

0001003 XX00400C Fifo_RoadL0_link3 32 R/W

0001004 XX004010 Fifo_RoadL1_link0 32 R/W

0001005 XX004014 Fifo_RoadL1_link1 32 R/W

0001006 XX004018 Fifo_RoadL1_link2 32 R/W

0001007 XX00401C Fifo_RoadL1_link3 32 R/W

0001008 XX004020 Fifo_RoadL2_link0 32 R/W

0001009 XX004024 Fifo_RoadL2_link1 32 R/W

000100A XX004028 Fifo_RoadL2_link2 32 R/W

000100B XX00402C Fifo_RoadL2_link3 32 R/W

000100C XX004030 Fifo_RoadL3_link0 32 R/W

000100D XX004034 Fifo_RoadL3_link1 32 R/W

000100E XX004038 Fifo_RoadL3_link2 32 R/W

000100F XX00403C Fifo_RoadL3_link3 32 R/W

0001010 XX004040 SPY_RoadL0_link0_STATUS 16=2+14
RO

WR clear

0001011 XX004044 SPY_RoadL0_link1_STATUS 16=2+14
RO

WR clear

0001012 XX004048 SPY_RoadL0_link2_STATUS 16=2+14
RO

WR clear

0001013 XX00404C SPY_RoadL0_link3_STATUS 16=2+14
RO

WR clear

0001014 XX004050 SPY_RoadL1_link0_STATUS 16=2+14
RO

WR clear

0001015 XX004054 SPY_RoadL1_link1_STATUS 16=2+14
RO

WR clear

0001016 XX004058 SPY_RoadL1_link2_STATUS 16=2+14
RO

WR clear

0001017 XX00405C SPY_RoadL1_link3_STATUS 16=2+14
RO

WR clear

0001018 XX004060 SPY_RoadL2_link0_STATUS 16=2+14
RO

WR clear

0001019 XX004064 SPY_RoadL2_link1_STATUS 16=2+14
RO

WR clear

000101A XX004068 SPY_RoadL2_link2_STATUS 16=2+14
RO

WR clear

000101B XX00406C SPY_RoadL2_link3_STATUS 16=2+14
RO

WR clear

000101C XX004070 SPY_RoadL3_link0_STATUS 16=2+14
RO

WR clear

000101D XX004074 SPY_RoadL3_link1_STATUS 16=2+14
RO

WR clear

000101E XX004078 SPY_RoadL3_link2_STATUS 16=2+14
RO

WR clear

000101F XX00407C SPY_RoadL3_link3_STATUS 16=2+14
RO

WR clear

0001020 XX004080 FF_REVENL_HF_FF_EF_flags
3 BITS x

8
RO

0001021 XX004084

ROAD_STATUS_REGISTER

Bit 0: tmode

Bit 2-1 PllDetect

Bit 7-3 date

Bit 11-8 version

Bit 15-12 month

Bit 19-16 ResetDone

Bit 28-20 RxByteIsAlign

Bit 31:28: FSMState

32bit RO

0001022 XX004088

ROAD_CONTROL

Bit 15-0: SET operation

Bit 31-16: CLEAR operation

Bit 0: StartReadFifoVME

Bit 1: LoopFifoVME

Bit 3-2: Tmode

1 RW

0001023 XX00408C TIMER_SCT 32 RO

0001024 XX004090 ERROR_EVENL
RO

WR clear

0001025 XX004094

ROAD_ALIGNMENT_STATUS

Bit 3-0: gt0_quad113

Bit 7-4: gt0_quad116

16 RO

Bit 11-8: gt0_quad213

Bit 15-12: gt0_quad216

0001026 XX004098

ROAD_RESETDONE_STATUS

Bit 3-0: tx_resetdone_quad113

Bit 7-4: rx_resetdone_quad113

Bit 11-8: tx_resetdone_quad116

Bit 15-12: rx_resetdone_quad116

Bit 19-16: tx_resetdone_quad213

Bit 23-20: rx_resetdone_quad213

Bit 27-24: tx_resetdone_quad216

Bit 31-28: rx_resetdone_quad216

16 RO

0001027 XX00409C

CONFIGURE

Bit 3-0: Board version

Bit 6-4: PRBS pattern selection

Bit 8: PRBS generator

4 RW

0001028 XX0040A0

CONFIGURE_POLARITY

Bit 15-0: TX polarity

213-216-116-113

Bit 31-16: RX polarity

32 RW

0001029 xx0040A4 KWORD MONITORING 32 RO

000102A xx0040A8 PRBS ERROR QUAD 113 32 RO

000102B xx0040AC PRBS ERROR QUAD 116 32 RO

000102C xx0040B0 PRBS ERROR QUAD 213 32 RO

000102D xx0040B4 PRBS ERROR QUAD 216 32 RO

000102E xx0040B8 DEBUG_DISABLE_HOLD_AUX 16 RW

000102F xx0040BC HOLD_AUX_STATUS 16 RO

000102E

00017FF

XX0040C0

XX005FFC

In the following table is the list of the ROAD memories

ADDR FPGA

[26:2]

ADDR AMBFTK

[31:0]
DESCRIPTION N of bits Type

S: 40000

E: 41FFF

S: XX100000

E:XX107FFC
OSPY_L0_link0 32 RO

S: 42000

E: 43FFF

S: XX108000

E:XX10FFFC
OSPY_L0_link1 32 RO

S: 44000

E: 45FFF

S: XX110000

E:XX117FFC
OSPY_L0_link2 32 RO

S: 46000

E: 47FFF

S: XX118000

E:XX11FFFC
OSPY_L0_link3 32 RO

S: 48000

E: 49FFF

S: XX120000

E:XX127FFC
OSPY_L1_link0 32 RO

S: 4A000

E: 4BFFF

S: XX128000

E:XX12FFFC
OSPY_L1_link1 32 RO

S: 4C000

E: 4DFFF

S: XX130000

E:XX137FFC
OSPY_L1_link2 32 RO

S: 4E000

E: 4FFFF

S: XX138000

E:XX13FFFC
OSPY_L1_link3 32 RO

S: 50000

E: 51FFF

S: XX140000

E:XX147FFC
OSPY_L2_link0 32 RO

S: 52000

E: 53FFF

S: XX148000

E:XX14FFFC
OSPY_L2_link1 32 RO

S: 54000

E: 55FFF

S: XX150000

E:XX157FFC
OSPY_L2_link2 32 RO

S: 56000

E: 57FFF

S: XX158000

E:XX15FFFC
OSPY_L2_link3 32 RO

S: 58000

E: 59FFF

S: XX160000

E:XX167FFC
OSPY_L3_link0 32 RO

S: 5A000

E: 5BFFF

S: XX168000

E:XX16FFFC
OSPY_L3_link1 32 RO

S: 5C000

E: 5DFFF

S: XX170000

E:XX177FFC
OSPY_L3_link2 32 RO

S: 5E000

E: 5FFFF

S: XX178000

E:XX17FFFC
OSPY_L3_link3 32 RO

2 AMBSLP JTAG CHAIN

2.1 AMBSLP V1

FIGURE 5

2.2 AMBSLP V2

FIGURE 6

SPI FLASH ROAD & HIT: N25Q128A Package: xxxxx

SPI FLASH VME & CTRL: AT45DB321D Package: xxxxx

HIT

XC7A200T

CONTROL

XC6SLX16

VMEDATA

REPEATER

XC95288XL

VME
INTERFACE

XC6SLX16

ROAD

XC7A200T

TDI

TDO

TDI

TDO

VME
INTERFACE

XC6SLX45T

XC6SLX45T

ROAD

XC7A200T

CONTROL

XC6SLX16

HIT

XC7A200T

3 LAMB CONFIGURATION

Four LAMBs are mounted on an AM board, and each LAMB has a BOUSCA chip (blue box in figure
7) for JTAG configuration. Figure 7, shows the organization of the 16 AMchips into 8 JTAG chains
on a LAMB. In this section a description of the picture in figure 7 is presented.

3.1 LAMB CHAIN CONFIGURATION

FIGURE 7

3.2 JTAG CONNECTION CHAIN

The JTAG connection on an AM board is made of 32 chains, and each chain contains 2 AMchips.
One chain requires one data bit, thus a total of 32 chains can be accessed in parrales exploiting the
32 bit of the VMEDATA bus. On each LAMB there are eight chains as shown on the right of Figure
7. The corresponding VME registers are: TMS_BSCAN, TDI_BSCAN, TDO_BSCAN, and an eight bit
slice of these registers is allocated to each of the four BOUSCA chips. The task of the VME chip is to
generate the address signals for them. Four LAMBs are accessed in parallel. For example with one
VME operation the 32 TDI signals, which are distributed to eight chains on all the four LAMBs, are
updated. The VME data bus is split in four slices, each consists of eight bits, between the four
LAMBs as shown in Table 1. Each one bit in a slice is allocated to one of the JTAG chains on a
LAMB as shown in Table 2.

VMEDATA[32:24] VMEDATA[23:16] VMEDATA[15:8] VMEDATA[7:0]

LAMB0 LAMB1 LAMB2 LAMB3

TABLE 1

VMEDATA bit [7] [6] [5] [4] [3] [2] [1] [0]

Chain 7 6 5 4 3 2 1 0

TABLE 2

Table 3 and 4 summarise the JTAG registers and JTAG operations of AMchip05. The IR values of
the registers, and their width is described in Table 3. Table 4 lists the IR values for JTAG
operations, which does not access a particular register but trigger a specific action on the chip.

IR value Width Name Description Type

0xFF 1 BYPASS Bypass RW

0x01 32 IDCODE ID Code (0x50004071 for AMchip05) R

0xC5 145 JPATT_DATA Pattern data RW

0xE5 145 JPATT_DATA Read back pattern data R

0xC4 16 JPATT_ADDR Pattern address RW

0xE4 16 JPATT_ADDR Read back pattern address R

0xC6 97 JPATT_CTRL Pattern bank configuration RW

0xE6 97 JPATT_CTRL Read back pattern bank configuration R

0xE8 25 REC_ADDRESS Bank output status R

0xC9 7 SERDES_SEL Select target SER/DES register RW

0xCA 32 SERDES_REG Write register selected by SERDES_SEL RW

0xCB 32 IDLE_CFG Idle output configuration RW

0xEA 32 SERDES_STAT_CFG Read information selected by SERDES_SEL R

0xED 32 CRC_REG Reads output stream CRC32 R

0xCD 42 PATT_TEST_REG Internal pattern test configuration R

TABLE 3

IR value Name Description

0xD4 OP_WRITE_INC Write pattern and increment JTAG_ADDR

0xD5 OP_SEL_BANK Select next pattern from bank

0xD6 OP_INIT_EV Init event

TABLE 4

4 VME FUNCTIONS AND COMMANDS

4.1 JTAG LOW LEVEL COMMANDS

Jtag Commands are included in the files ambslp.cxx, ambslp_jtag_func.cxx,
ambslp_VME_jtag_func.cxx

4.2 ONE EXAMPLE OF STUCTURED PROCEDURE: STANDALONE AMBOARD

LOOP FUNCTION

This section describes an example of procedure that can be run on the AMBSLP

as a standalone board.

We describe the vme commands to configure the AMBSLP and how to run the

commands to enable in the event internal loop mode.

Loop of events using the LAMBs and AM05 chips

 initialization_ambslp.sh reset procedure
 ambslp_amchip_8b_10b.cxx setup of links. The bus0 clock

(recovered) used for input logic; out clock used for majority and readout;
 ambslp_status.cxx prints on screen the status of all input/output links

to identify if all of them are correctly aligned;
 reset_gtp_road.sh reset of Road GTPs – usually if problems are found

they are in Road, so please use this fuction to reset again the GTPs;
 ambslp_amchip_jpatt_cfg.cxx configure the AMchips, like the

geographical addresses of the chips, the patflow status, the testmode,
the majority THR, the pattern enable/disable control…. We use this

function only to change the parameters that need to be used differently
from the default, in this case they are: (a) THR=15; (b) testmode=1; (c)

disable pattflow (=1). This is important to do before writing patterns.

 ambslp_amchip_init_evt.cxx we give an INIT so that the parameters
set before becomes active in AMchip.

 ambslp_amchip_disable_bank.cxx we configure the chip to disable
all the patterns turning off the match in the majority.

 ambslp_amchip_init_evt.cxx we give an INIT so that the patterns
are really disabled.

 ambslp_amchip_enable_bank.cxx we enable the bunch of patterns

we want to use. We can enable a number of patterns set by the
parameter “npatt” starting from the address “offset”. By default they are

all the AM05 patterns (~2000) staring from offset 0.
 ambslp_amchip_init_evt.cxx we give an INIT so that the patterns

are really enabled.
 ambslp_amchip_jpatt_cfg.cxx configure the AMchips to start running:

(a) tmode=0; (b) THR=0 (or whatever is preferred) (c) pattflow=0;

 ambslp_amchip_init_evt.cxx we give an INIT so that the parameters
set before becomes active in AMchip.

 ambslp_feed_hit.cxx reads hitfile from disk and download hits on
input fifos.

 ambslp_out_spy.cxx reads spy buffers and print the content. With this
is possible to check if the expected roads really came out. If the THR is

zero, all the enabled patterns should be readable.

Loop of fake events without LAMBs and AM05 chips, but using simulated Roads
preloaded on output fifos. Probably the description is **obsolete**.

The first operation is a reset procedure:to set-up the configuration registers of
the AMBSLP board and to send a reset. The command are executed by

ambslp_init_main, *ambslp_config_reg_main* and

ambslp_reset_spy_main. The option --help after each command give a list

of all input parameters (ambslp_init_main --help).

 ex: ambslp_config_reg_main --slot 15 --fixpolarity 1 --

boardver 0 #Configure the register and fix the polarity of the link
from/to AUX; select the board version

o –boardver 0 #configuration for the AMBSLP v1
o –boardver 1 #configuration for the AMBSLP v2

 ambslp_init_main --slot 15 #send a reset pulse to the AMBSLP
 ambslp_reset_spy_main --slot 15 #Resetting the input and output

spybuffer

[OPTIONAL] In case that you have a real pattern bank file this command is
useless.

To generate a random pattern bank, the command *ambslp_patt_gen_main*
defines the number of patterns that compose the pattern bank

 Ex: ambslp_patt_gen_main --npatt 500 exmple_patternbank.patt

After generating the random pattern bank or starting from a real pattern bank
file, the *ambslp_gen_hits_main* command generates a file with the hit of

events (the option ambslp_gen_hits_main --help give a description of all input
parameters)

 Ex: ambslp_gen_hits_main -e 3 -r 10 --rs

example_patternbank.patt > example_hit.hit

[OPTIONAL] In case that you have a stream of roads coming from AMchips this
command is useless

To generate random roads to be sent to the AUX card, the command *
ambslp_gen_roads_main* creates a file with roads and end event.

 Ex: ambslp_gen_roads_main --nroad 10 --nevent 3

example_road.road

After generating the Hit file and the road file, the command

ambslp_feed_hit_main and *ambslp_feed_road_main* enable the loading of
the VME fifos

 Ex: ambslp_feed_hit_main --slot 15 -- loopfifovme 0

example_hit.hit #loading fifos and sending hits without loop; you can
load several input files

 Ex: ambslp_feed_hit_main --slot 15 -- loopfifovme 1

example_hit.hit #loading fifos and sending hits with loop; to stop the
loop you have to send the ambslp_init_main command

 ambslp_feed_road_main --slot 15 --loopfifovme 0
example_hit.hit #loading fifos and sending roads without loop; you can

load several input files

 ambslp_feed_road_main --slot 15 -- loopfifovme 1
example_hit.hit #loading fifos and sending roads with loop; to stop the

loop you have to send the ambslp_init_main command

The command *ambslp_status_main* monitors some internal registers of the
AMBSLP FPGAs such as: the alignment, the reset done of the gtp, the counter

of loss of synchronism, the PRBS error links, the hold status signal.

 ex: ambslp_status_main --slot 15

The command *ambslp_inp_spy_main* and *ambslp_out_spy_main* dump

the content of the 12 input spybuffer and 16 output spybuffer with the status
register associated to each links

 ex: ambslp_inp_spy_main --slot 15

 ex: ambslp_out_spy_main --slot 15

Usefull links

 https://twiki.cern.ch/twiki/bin/viewauth/Atlas/FastTrackerHar
dwareDocumentation

 svn+ssh://svn.cern.ch/reps/atlasgroups/Trigger/FastTracker/D

ocs/Specs #directory with the documentation

 svn+ssh://svn.cern.ch/reps/atlasftkfw/AMboard #directory with

the AMBSLP firmware

4.2.1 SIMULATION OF THE AM BANK TO PRODUCE ROADS

This section describes the commands to simulate the expected roads from the

AMchips, given a certain pattern bank, in order to compare with the road

coming out from the hardware

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/FastTrackerHardwareDocumentation
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/FastTrackerHardwareDocumentation

The *ambslp_expected_raod_DC* takes two files in input, the pattern bank file

and the hit file, and performs the simulation to find the expected roads. The
command has the possibility to set the main following parameters: the

threshold of the matched patterns, the bitmap enable and the number of used

Don’t Care bits

 Ex: ambslp_expected_road_DC_main --thr 7 --laymap 1 --sort 1 -
-eebit 15 PattBank.txt HitFile.txt # the output of the simulation is a

file with the list of matched roads and end event words.

The list of matched roads from the AMchip can be obtained dumping the out
spybuffers. The comparison between this list and the HW output is performed

by the *ambslp_road_diff* script.

 Ex: ambslp_road_diff_main matched_road_simulation.txt
matched_road_hardware.txt # the output is the result of the

comparison between the two files.

