Study of systematic error on acceptance for $W \rightarrow \mu \nu$

Manuela Venturi Roma Tor Vergata 4 settembre 2008, Milano

Systematics

Total cross section measurements are dominated by the sistematic uncertainty, even for modest integrated luminosity. The main cross section uncertainty is related to the acceptance uncertainty, which in turn comes from our limited knowledge of the underlying physics: non-perturbative mechanisms, PDFs, and so on.

My work

- Comparison of acceptances with <u>Leading Order</u> generators, i.e. <u>Herwig</u> and <u>Pythia</u>, and Next to Leading, i.e. MC@NLO, both in Stand Alone mode and in the Athena framework, at generation level
- Study of systematics with MC@NLO for:
 - PDF : CTEQ6.1M error sets
 - Intrinsic P_t of partons
 - ISR

Event generation

- Stand Alone MCs: HERWIG 6.5.10 (Fortran) and PYTHIA 8.1.05 (C++): samples of 100 k events
- MCs + Athena release 11.0.5 samples of 40 k events
 Acceptances at generation level
 Standard DC3-job Options: https://twiki.cern.ch/twiki/bin/view/Atlas/WaSample HERWIG https://twiki.cern.ch/twiki/bin/view/Atlas/WZPythiaSample PYTHIA

Note: Vs > 60 *GeV for Z production*

The work was done with CTEQ6L PDF, at leading order

Kinematics cuts

Channel	kinematics cuts (allowed region)		
$W \to e\nu$	$p_T^e > 20 \text{GeV}, E_T = p_T^\nu > 20 \text{GeV}$		
	$ \eta_e < 1.37 \cup 1.52 < \eta_e < 2.5$		
$W \to \mu \nu$	$p_T^{\mu} > 20 \text{GeV} E_T = p_T^{\nu} > 20 \text{GeV}$		
	$ \eta_{\mu} < 2.5$		
$Z \rightarrow e^+ e^-$	$p_T^{e^{\pm}} > 20 \mathrm{GeV}$		
	$ \eta_{e^{\pm}} < 1.37 \cup 1.52 < \eta_{e^{\pm}} < 2.5$		
$Z \to \mu^+ \mu^-$	$p_T^{\mu^{\pm}} > 20 \mathrm{GeV}$		
	$ \eta_{\mu^{\pm}} < 2.5$		

Geometrical acceptances

Duthia in Athana

					r yulla lli Aulella
Acceptances [%]				These are at reconstruction	
	Stand	Alone	Ath	ena	level! /
Channel	Herwig	Pythia	Herwig	Pythia	CSC note
$W \to e \nu$	43.38	42.18	41.52	42.84	44.3
$W \to \mu \nu$	46.12	45.29	45.12	46.37	45.4
$Z \rightarrow e^+ e^-$	36.23	34.26	33.71	35.22	42.4
$Z \to \mu^+ \mu^-$	40.92	40.06	39.53	40.74	39.9

	Herwig	Pythia	
$W \rightarrow ev$	34.27	34.51	Marc Goulette
$p_T > 25$ GeV: both $ \eta < 2.5+cracks$ only for e	<u>34.40</u>	<u>34.12</u>	<u>M. Venturi</u>
$Z \rightarrow ee$	45.27	46.20	Marc Goulette
$p_T > 20 \text{ GeV: both}$ $ \eta < 2.5 + \text{cracks: both}$ $\sqrt{s} > 60 \text{ GeV}$	<u>33.71</u>	<u>35.22</u>	<u>M. Venturi</u>
	-	35,95	Ellie Dobson

Acceptance systematics for $W \rightarrow \mu \nu$ MC@NLO 3.3 with PDF version CTEQ6.1 M

Home produced samples of 50 k events, both in Stand Alone mode, and in Athena release 11.0.5, at generation level

Standard cuts: $P_t > 20$ GeV for both, $|\eta| < 2.5$ for μ

PDF error sets: a brief introduction

There are formidable difficulties when standard statistical methods are applied to global QCD analysis:

- Large body of data from many different experiments to fit (~ 1800 data points from 15 experiments for CTEQ)
- 2. The theoretical model has its own uncertainties
- 3. Correlance in uncertainties?

Solution: the **Hessian method**:

the 20x20 Hessian matrix is iteratively diagonalized, resulting in 20 eigenvalues and 20 orthonormal eigenvectors.

 N_p =20 is the number of free parameters for QCD analysis, with whom we can encapsulate the behavior of the global χ^2 function in the neighborhood of the minimum

$$x f(Q_0,x) = A_0 x^{A_1} (1-x)^{A_2} e^{A_3 x} (1+A_4 x)^{A_5}$$

hep-ph/0201195v3, Pumplin et al.

The result is <u>2Np+1 PDF sets</u>: the best fit $S_0 + 2N_p$ error sets (along the plus and the minus direction)

2-dim (i,j) rendition of d-dim (~20) PDF parameter space

contours of constant χ^2_{global} **u**_i: eigenvector in the *l*-direction **p**(*i*): point of largest a_i with tolerance T **s**₀: global minimum

> diagonalization and rescaling by the iterative method

Hessian eigenvector basis sets

T z_l p(i)

(b) Orthonormal eigenvector basis

CTEQ 6.1 distributions

$W^+ \longrightarrow \mu^+ \nu$

 \mathbf{X}^+ $\rightarrow \mu^+ \nu$

$W^{-} \rightarrow \mu^{-} \nu$

 $W^{-} \rightarrow \mu^{-} \nu$

$$\Delta X_{max}^{+} = \sqrt{\sum_{i=1}^{N} [max(X_i^{+} - X_0, X_i^{-} - X_0, 0)]^2}$$
$$\Delta X_{max}^{-} = \sqrt{\sum_{i=1}^{N} [max(X_0 - X_i^{+}, X_0 - X_i^{-}, 0)]^2}$$

	W ⁺	W
Stand Alone	$43,55^{+1,27}_{-0,92}$	$43,39^{+1,10}_{-1,31}$
Athena	$43,\!19^{+0,80}_{-0,91}$	$42,81^{+1,23}_{-0,98}$

Marc Goulette's result with ResBos MonteCarlo: W⁺: +0,68, - 0,84 W⁻: +0,89, - 0,90

Intrinsic P_t of partons

At LO, we expect the colliding partons to be exactly collinear with the colliding beams : W produced with P_t=0

But:

- 1. Partonic intrinsic (non-perturbative) P_t due to Fermi motion, $<\!\mathsf{P}_t\!>\sim\Lambda_{QCD}$
- 2. Perturbative emission of hard partons : hard, power-law tail in vector boson P_t distribution

So, what about correlations between ISR and intrinsic P_t?

Just fluctuactions! Indeed our physical value (acceptance) should not depend on such a non-perturbative quantity!

Marc Goulette's result: 0,41 % (P_t on)

Muon P_t and pseudorapidity in Stand Alone mode

$W^+ \longrightarrow \mu^+ \nu$

	ISR on	ISR off	off-on
Stand Alone	43,551	46,559	3,008
Athena	43,190	43,195	0,005

Marc Goulette's result: 0,11 %

Work to be done next

- EW corrections (Photos), UE on/off, ME on/off
- Tony Weidberg (Oxford): what about merging muons and photons in Athena, for $\Delta R < \Delta R_{MAX}$?
 - Study the sensitivity to $\Delta {\rm R}_{\rm MAX}$
 - Study the sensitivity in imposing a cut on photon P_t
- Osamu Jinnouchi (Cern): validation of <u>MRST2007lomod.LHgrid</u>, modified Leading Order, with Herwig and Pythia, for W and Z acceptances