

The Serial Link Processor for the Fast TracKer (FTK) at ATLAS

Pierluigi Luciano

PHD student at University of Cassino Fellow at INFN

Outline

FTK: the Online Silicon Detector Tracker for ATLAS upgrade

- FTK reconstructs charged particle trajectories in the silicon tracker (Pixel & SCT) at "1.5" trigger level.
- Extremely difficult task
 - 25 ns inter-bunch time70 pile-up events at top luminosity.

An online silicon detector tracker for the ATLAS upgrade

- FTK reconstructs charged particle trajectories in the silicon tracker (Pixel & SCT) at "1.5" trigger level.
- Extremely difficult task
 25 ns inter-bunch time
 70 pile-up events at top luminosity.

"1.5" Level Trigger processor

- Silicon data currently used only locally (ROI) and late in Level 2.
- FTK reconstructs all tracks with pT>1 GeV/c in time for Level 2.
- Track parameters are computed with full detector resolution.

"1.5" Level Trigger processor

FTK architecture

Pattern Matching & Track Fitting

- The Fast TracKer is an hardware processor that perform the on-line track reconstruction.

- Two sequential steps:

→ pattern matching & the track fitting

Definition of pattern bank: list of low resolution candidate tracks.

The input
Hits are
compared
with the
pattern bank.

(b) Pattern recognition:

(full match)

(match with a missing layer)

(no match)

Roads Matched pattern

Pattern Matching & Track Fitting

AM chip working principle

Each pattern: 8*16 (o 4*32) bits comparators

Each 10 ns 128 kpat *4 = 500 K instructions \rightarrow 500 K * 100 M = 50 10⁶ MIP/CHIP

- 3.2*109 MIP/AMB (64 chips)
- 4*10¹¹ MIP in the whole AM system

Associative Memory Board

- The **Input FPGA** distributes silicon **HITs** to the 4 **LAMBs**.
- The **Input FPGA** monitors the **HITs** format to check the end event and the errors in the data

- The matched ROADs are collected from theOUT FPGA
- The **OUT FPGA** creates the end event word

Recent developments of the Associative Memory chip

AM chip 04:

- Package: PQ208
- Parallel I/O interface
- 8k patterns
- Crazy routing of LAMB

More performance needed with the new AMChip06:

- Increase the number of pads.
- Use BGA package for more pins
- Simplify LAMB routing

Idea: serial link to transmit the data

Associative Memory Chip - Family 05

We bought a *IP-CORE* to provide the *chip* with serialisers and deserialisers.

MiniAMChip05

Package: QFN 64

Die: 3.7 mm²

Board: MiniLAMB-SLP

Status: under test

Package: BGA 23 x 23 mm

Die: 12 mm^2

Board: LAMB-SLP

Status: submitted

MiniLAMB-SLP & LAMB-SLP

- The final LAMB-SLP board will be ready in short time.
- In one LAMB-SLP board will have 16 Amchips.
- → for a total of ~2 M of patterns
- The routing is simplified.

- This is a prototype of LAMB-SLP board with 4 MiniAM chips.
 - → This board is important to confirm our idea and our solution on Serial Link.

MiniLAMB-SLP & LAMB-SLP

 The final LAMB-SLP board will be ready in short time

Serial Link.

MiniLAMB-SLP & LAMB-SLP

- The final LAMB-SLP board will be ready in short time.
- In one LAMB-SLP board will have 16 Amchips.
- → for a total of ~2 M of patterns
- The routing is simplified.

- This is a prototype of LAMB-SLP board with 4 MiniAM chips.
 - → This board is important to confirm our idea and our solution on Serial Link.

AMB-SLP board

The AMBSLP (Serial Link Processor) board design:

Interface:

- 12 input buses @ 24Gbps
- 16 output buses @ 32Gpbs

Three FPGA:

- 1 for the input data distribution (ARTIX-7)
- 1 for the output data distribution (ARTIX-7)
- 1 FPGA for the data control logic (SPARTAN 6)

We used only serial standard for data distribution to and from the AM chips

Test Stand

Complete test with:

- AMB-SLP board.
- MiniLAMB-SLP board.
- Crate VME.
- CPU TDAQ 4.

- We perform a Serial Link's test with a PRBS Generator.
- We used a IBERT core in Xilinx's ISE.

Serial Links

Both input and output serial links characterized for signal integrity.

- Serial Link @ 2 Gb/s
- → Input path
- FPGA to FANOUT to AM Chip
- Intermediate buffers
- → Output path
- AM Chip to FPGA
- Intermediate repeater

Result

Types of measure:.Jitter Analysis.BER.Eye diagram

Send PRBS data:
 PRBS checker
 BER < 10⁻¹⁴

Conclusion

Pattern Matching

- Pattern Bank: All the possible patterns (low resolution real track candidates) are precalculated and stored in the Pattern Bank.
- Pattern matching: All the hits in each event are compared with all the patterns in the Bank and track candidates (ROADs) are found.
- Track Fitting: Fits of the full resolution silicon HITs contained in each ROAD determine particle tracks parameters.

Hardware to perform Pattern Matching

AMB_SLP

- VME 9U
- Serial Links @ 2 Gbs
- Clock @ 100 MHz

LAMB_SLP

- Custom dimension
- Serial Links @ 2 Gbs
- Clock @ 100 Mhz
- 16 Associative Memory chips

Status: we have a prototype reduced

MiniLAMB-SLP

- 16 AM chip are mounted on one MiniLAMB-SLP board.
- 4 MiniLAMB-SLP board are mounted on AMB-SLP board

Data flow in AM system

- The *FPGA* receive the cluster's list from P3 connector and distributes to 4 MiniLAMB-SLP boards.
- L'FPGA receive the road from MiniLAMB-SLP board and sends them to the rest of the system through the P3 connector.

AMB-SLP Board

Processing Unit

- In a Processing Unit we perform a Pattern Matching's algorithm.
- The AM chip is the key of this algorithm.

- More than one AMChip is controlled in parallel
- Increase the capability to store pattern

- Dedicated device:Maximum parallelism
- Each pattern withprivate comparator
- No needsynchronization ofdifferent HITs layerMatch with missing layer

AMChip04:

- Package: PQ208
- Parallel I/O interface

It's necessary to increase the number of pads for future versions:

- To use a BGA package.
- It's necessary to simplify the routing of board.

Idea: serial link to transmit the data

Associative Memory Chip - Family 05

We have bought a *IP-CORE* to provide the *chip* of serialisers and deserialisers.

MiniAMChip05

Package: QFN 64

Die: 3.7 mm²

Board: MiniLAMB-SLP

Status: under test

Package: BGA 23 x 23 mm

Die: 12 mm^2

Board: LAMB-SLP

Status: submitted

Recent developments of the Associative Memory chip

AM chip 04:

- Package: PQ208
- Parallel I/O interface
- 8k patterns
- Crazy routing of LAMB

- With the new AMChip06 we need more performance.
- It's necessary to increase the number of pads for future versions:
 - To use a BGA package for more pins.

But it's necessary to simplify the routing of board.

Idea: serial link to transmit the data