
AMchip testing using IPbus

Students: Édouard Benoit, Yurii Piadyk

Supervisor: Francesco Crescioli

Why we used IPbus

Why IPbus:

 we wanted better speed than uart

What we have now:

 possibility to remotely control AM chip’s JTAG

 how remote?

LPNHE local
network

LPNHE’s
hermes
server

Electra server
Milan

Kintex 7
evaluation
board

AM chip
miniAsic2(?)

What we were enabled to do

basic test, this plot shows which patterns
missbehaved

 we are able to see 2 very distincts zones, which fits with a already

investigated feature of the chip: init in the first 128 patterns is known not
to propagate fast enough

 we can now assume we have a reliable way to communicate distantly

with the chip

Firmware side (IPbus slaves)

IPbus implements the reliability mechanism for data
transfer via unreliable but lightweight and easy to
implement UDP protocol.
IPbus firmware can’t initiate data transfer because this is
a privilege of the uhal software as the most complicated
part of the reliability mechanism is implemented on
software side.
IPbus packet consists of the header and sequence of
read/write(with data) requests. So IPbus firmware can
send data only as response on read request from uhal.
Data and address widths used in IPbus are 32 bits. Part of
the address codes a slave request is addressed to.

There were problems with build in IPbus reliability
mechanism so we needed to add our own.

FPGA

Remote machine

ControlHub

Local machine

Python script

uhal

Tri_mac_ethernet IP

IPbus

Slaves

Address decoder

Slave 0 Slave 1

External RAM

JTAG Controller
JTAG

AMchip

Slave N

Internet

connection

Local network

Communication between the
Software and Firmware

New JTAG Session

Preparation of JTAG Commands list

Splitting of the JTAG Commands list into the

JTAG packets

Deliver the first JTAG Packet

Receive the response. Data happens to be

corrupted – resend the JTAG packet

Correct response was received – sending

Trigger Execution packet and without

waiting for response

Send request for execution results

Receive the results. If data is not valid yet –

repeat the request

Send next JTAG Packet

…

Merge the results and

Analyze

Start new JTAG session and so on

Receiving of the JTAG packet

Sending back what we have received

Receiving of the JTAG packet

Sending back what we have received

Trigger Execution packet arrived – start

processing JTAG command

Finish JTAG Commands execution. Data is

valid now

Request for results arrives just in time –

send the results

Software side (python script)

import uhal, jtag # uhal is software provided with ipbus. Jtag is developed by us

d = uhal.getDevice("fpga", "chtcp-2.0://electra.fisica.unimi.it:10203?target=192.168.0.8:50001",
"file://addresses.xml") # note that we connect to the FPGA not directly but via ControlHub
(chtcp-2.0 instead of ipbusudp-2.0) because FPGA is connected locally to the remote machine

j = JTAG(d, buf_size=400) # New Session is stared automatically. Buf_size can be up to 2800 Jtag
commands (350 words) – limited by the ipbus packet size

j.ResetAMchip() # some Jtag commands to reset the AMchip

id_info = j.GetIDCODE() # id_info contains the information about how many JTAG commands and
where were added to total list in order to access register with IDCODE. id_info is needed to
retrieve register value from the results

alternative: id_info = j.access_register(IR=0x1, DR=0x0)

j.access_long_register(…)

…

j.Dispatch() # during dispatch commands are splitted to packets, sent, executed and then results
are merged

j.PrintResults() # prints results of the execution of all commands

print “IDCODE = ”, j.retreive_register(id_info) # or we can retrieve interesting for us information

j.NewSession()

…

Outlook

• Optimize JTAG commands delivery in terms of
speed and reliability

• Add another IPbus slave for fast serial link
connection

• Do the tests

Acknowledgements

We should thank to Francesco for his help and advices

