

Incontro ATLAS e CMS per l'Upgrade a SLHC Sestri Levante, November 13-14, 2008 G. Darbo - INFN / Genova

Workshop Page: http://iacu-2008.ge.infn.it/

Why Machine / Experiment Upgrade?

Reasons to upgrade LHC:

MACHINE

Due to the high radiation doses to which they will be submitted, the LHC IR quadrupole magnets have to be replaced after integrated luminosity of 700 fb-1

EXPERIMENTS

 Depending on the luminosity evolution, the error "halving time" will exceed 5 year at this time

Peak luminosity affects detector and DAQ/Trigger performance

Ref: LHCC 1/7/2008 – Roland Garoby

LHCC: Integrated Luminosity

Integrated luminosity affects detector's life

Basic Expectation

Solution After 2009 we will know LHC startup with much greater certainty

			Normal Ramp		No phase II			
		Year	Peak Lumi (x 10 ³⁴)	Annual Integrated (fb ⁻¹)	Total Integrated (fb ⁻¹)	Peak Lumi (x 10 ³⁴)	Annual Integrated (fb ⁻¹)	Total Integrated (fb ⁻¹)
	Collimation	2009	0.1	6	6	0.1	6	6
		2010	0.2	12	18	0.2	12	18
	pnase 2	2011	0.5	30	48	0.5	30	48
1	Lines 4 + ID	2012	1	60	108	1	60	108
		2013	1.5	90	198	1.5	90	198
	upgrade	2014	2	120	318	2	120	318
	phase 1	2015	2.5	150	468	2.5	150	468
1		2016	3	180	648	3	180	648
	New	2017	3	0	648	3	0	648
	injectors +	2018	5	300	948	3	180	828
	IR upgrade	2019	8	420	1428	3	180	1008
	phase 2	2020	10	540	2028	3	180	1188
		2021	10	600	2628	3	180	1368
	Dediction	2022	10	600	3228	3	180	1548
	Radiation	2023	10	600	3828	3	180	1728
	damage	2024	10	600	4428	3	180	1908
	limit ???	_2025	10	600	5028	3	180	2088

G. Darbo - INFN / Genova

INFN

Summary of ATLAS Upgrade Path

- ♀ Agreed scenario ATLAS/CMS/LHC at LHCC 1st July 2008
 - No guarantee that because we agreed to it, it will happen! But it is what we use to plan with.
- Summary L, integrated L, phases from Roland Garoby's talk (LHCC 1/7/2008, before LHC accident, next slides)
 - After 2009 we will know LHC startup with much greater certainty
 - Phase I LHC upgrade in 2013 (long shutdown)
 - Phase II upgrade (SLHC) in 2018
- - Inserted B-Layer (IBL)
 - shutdown date is not due to end-of-life of B-layer but because it is the only long shutdown available for installation
 - SCT/TRT/LAr/Tiles/Muons/Trigger
 - Initial look sees some, but not many, changes needed.
 - ATLAS planned for 2x10³⁴ and 700 fb⁻¹ Phase I is 50 % increase on peak rate and no change integral.
 - Need to go through methodically to avoid surprises.

Ger Properties States States States States States States For phase II (2017) − ATLAS Plans:

- Rebuild Internal Tracker
- New FE electronics for Calorimeters, Muons
- Shielding the beam pipe region and/or replace ss beam -pipe sections to AI sections and AI to Be to reduce background in forward muon chambers
- L2 trigger upgrade, L1 trigger will be the challenge.
- Total upgrade costs: 180÷220 MCH (evaluation done in 2005)

Why Pixel Replacement & What to do

- B-layer was designed to survive 3 years of LHC nominal luminosity (10³⁴cm⁻²s⁻¹, 300fb⁻¹)
 - NIEL fluence = 10^{15} neq/cm² (mainly from pions).
 - Ionizing Dose = 500 kGy (50 Mrad).
 - Sensors & Electronics are the critical parts.
- B-layer replacement studied in a dedicated Workshop (10/2007).
 - B-Layer cannot be replaced in a 8 months long shutdown: pixel package has to be extracted and taken to surface, Quarter Service Panels must be opened.
 - Project more difficult than foreseen → ATLAS set up a B-layer Task Force with a 6 month mandate to find a way out.
 - Task Force analysed the boundary conditions and finally came to preferred recommendations to ATLAS and Pixels.

B-Layer - TF : Findings & Recommendations

- Indings → replacement needed in 2012 shutdown (long shutdown before SLHC):
 - Detector designed for 300 fb⁻¹, could probably withstand to 400fb⁻¹ or a bit higher with reduced efficiency;
 - Integrated dose acceptable even with margin of error until 2013, but not until 2016;
 - Hard detector failures requires to have a replacement.
- Other findings \rightarrow replacement scenarios:
 - B-layer cannot be replaced in a long shut down (8 months) requires extraction of the pixel package, opening the whole detector (also beam pipe cannot be extracted without opening of pixel package -> special tooling and procedure to make in situ)
 - Other options as a *simpler 2 hit system with present technology* (case of disaster) *not realizable* (collaboration to make, spares not available)
 - **Study the insertion** of a smaller b-layer and a smaller beam pipe inside the existing detector
- Recommended solution \rightarrow inserted B-layer (IBL) with new (module) technology
 - But why so difficult to replace and how to make an IBL. Next slides...

B-Layer from TRD to Today

Original TDR design (1998)

- Pixel Layer1 and Layer2 where "fixed" to SCT.
- B-Layer was insertable and clam shell

Inner Tracker Geomertry

Schedule, Design Changes & Implications

- In 2000 the Pixel schedule was delayed by the FE & MCC designed in DMILL.
 - A new "reduced" layout of Pixel transformed an year later to "insertable" layout
 - It uses a support tube and a reduced radius of the detector.
 - The new Pixel allows later insertion of the detector if not ready
 - At that time the starting of LHC was 2005

Implications

- The development of the services with the new constraints to fit in the "Pixel Support Tube" made impossible to keep the B-Layer insertable.
- From the experience in integrating the detector we have seen that opening and closing the "package" is more than 8 months.
- Activation of the detector adds additional difficulties

Pixel Integration and Installation

Upgrade di ATLAS a SLHC

B-Layer Replacement - Insertion

Study a smaller radius B-layer to insert in the existing Pixel

- It seems feasible (or not unfeasible) but not demonstrated yet;
- 16-staves (present module "active" footprint gives hermetic coverage in phi) not shingled b-layer. Requires new smaller beam-pipe;
- Module technology: tracking hermetic requires new module design increase live area of the footprint:
 - New chip design (FE-I4) live fraction, I/O bandwidth, 200 Mrad;
 - Sensor increase radiation hard (smaller radius and ramping up LHC luminosity): 4x10¹⁵ n_{eq}/cm².
- Services are under feasibility studies and solutions should be defined soon (end of 2009 begin 2010).
- R&D and prototyping in 2009, construction 2010-2012;

B-Layer Scenarios

To maintain Pixel Detector performance with inserted layer, material budget is critical.

INFN

Development of new local support structure with carbon-carbon foams (See Danilo's talk).

Component	% X ₀
beam-pipe	0.6
New-BL @ R=3.5 cm	1.5
Old BL @ R=5 cm	2.7
L1 @ R=8 cm	2.7
L2 + Serv. @ R=12 cm	3.5
Total	11.0

G. Darbo - INFN / Genova

IBL Project Organization

 IBL Coordinator reporting to ATLAS and Pixel community (PL and Institute Board)

- Expected to come from present Pixels
- Selection process and appointment should be completed for Feb'09 Collaboration Board

Funding Model

- The overall model for the B-Layer Replacement was that this part of the detector was a "consumable".
- A dedicated line of funding, contained inside the Pixel M&O B, exists for the B-Layer Replacement: for 2009 2012 construction period is foreseen to be roughly 4 MCHF.
- The Project Office funding is foreseen to come largely from M&O A.
- First, very rough, cost estimates would indicate a cost of about 7-8 MCHF, including the new beampipe.

Inner Tracker, L1 Trigger,...

SLHC – Luminosity Scenarios

- Several machine scenarios have been looked in the ATLAS upgrade.
 - LPA Large Piwinski Angle 294 Ev/BC, 25 ns BC
 - ES Early Separation 400 Ev/BC, 50 ns/BC

Inner Tracker

- Look for similar performance as LHC
- Occupancy affects pattern recognition -> more Pixels
- And R/O -> new FE design
- Radiation dose -> Sensor technology

Inner Tracker Layout

- Low mass = $1.5 \% X_0$
- Std mass = $2.7 \% X_0$
- Strips assumed from Strawman08

short strip

long strip

long strip

SCT

SCT

SCT

57.4 cm

81.4 cm

95.4 cm

Layout Study - Momentum & Vertex resolution

- SLHC StrawMan layout improves Momentum and δZ resolution (at "0" luminosity)
 - Replacement of TRT with Strips
 improves momentum resolution
 - Smaller pitch in Z of pixels (250 μm from 400 μm) improves primary vertex resolution as shown in table.

Layout	δ Ζ(μm)
Current ID	~41
StrawMan 08	~28
p101011	~23
6 Pixels	~23

Std ID = 4.0•10⁻⁴ GeV⁻¹

StrawMan08 = 2.4•10⁻⁴ GeV⁻¹

6 Pixel layers = 2.0•10⁻⁴ GeV⁻¹

V.Kostyukhin - 06/11/2008 ATUW

Parametric resolution study using LCDtrk track error calculations Nominal Barrel geometry: R=(3.7, 7.5, 16.0, 20.0)

Strawman improves below 20 GeV/c tracks. See also current ATLAS Layout (fig. top right).

B-tagging at High Pileup

- Big increase of amount of fakes with pileup in "StrawMan" layout . SCT part seems do not have enough resolution to reject fakes effectively.
- Factor ~3 degradation of b-tagging at 200ev pileup for StrawMan layout with respect to zero lumi. Below current ID performance with ≥100ev pileup.
- What to do? Extend pixel part to larger radius? Luminosity leveling?

V.Kostyukhin - 06/11/2008 ATUW

INFN

ATLAS Trigger at SLHC

• Much higher detector occupancy, so even 100KHz L1A rate will require much higher readout bandwidth

- Rely more on multi-object triggers
 - Not without consequences: e.g. L1 single muon geometrical acceptance ~80%, double muon e = (80%)²
 - Increased probability for trigger objects to come from different pp collisions
- Raise p_T thresholds (wrt 10³⁴)
 - Past studies suggested we may have to go up to 60GeV at L1 for single e/m triggers:
 - the L1 e/m rates fall much smoother above ~30GeV
 - Also CMS has the same behaviour. Muon trigger p_T is limited in CMS by multiple scattering in iron, by detector resolution in ATLAS
- - Correlate objects between ID and Calo/Muon.
 - Several ideas. Implementation looks challenging...

R&D FOR SLHC

R&D for SLHC

In 2005 the High Luminosity Upgrade Steering Group (USG) defined procedures for R&D of interest for ATLAS

- Activity Matrix Define R&D activities.
- Procedures for R&D proposal not necessarily imply the technology being proposed for study is going to be definitely also accepted for implementation.
 - Submitted to USG.
 - Reviewed and circulated to the Collaboration Board (CB) for other Institutes to join.
 - The refined proposals are re-evaluated, now also considering strongly the resources foreseen.
 - Recommendation for approval (or not) to be handed to the Executive Board (EB).
- Total of 34 proposal submitted since 2005. ~210 Institutes participating (multiple times), 7% of INFN.

Inner Tracker R&D

Stand Document Control Institutes Institutes Sensors Development, velocity and industrialization of Puel Destor Cinizia David Cinizia Davidia David Cinizia David <t< th=""><th>L</th><th></th><th>Approved</th><th>Short</th><th></th><th></th><th></th></t<>	L		Approved	Short			
Song of the second se			Document 🚖	name 🌲	Title	Principle contact 🖨	Institutes 🖕
ATU-RD-MN-0010 Thin Pixels R&D on thin pixel sensors and a novel interconnection H-G. Moser Bann, Dortmund, Interon, MPP Munich, Osio ATU-RD-MN-0012 Diamond Diamond Pixel Modules for the High Luminosity ATLAS Marko Mikuž Bonn, Carleton, CERN, Jožef Stefan Institute, Ohlo Stake, Toronto ATU-RD-MN-0012 Diamond Pixel Modules for the ATLAS Inner Tacker at the Super LHC (SLHC) Marko Mikuž Bonn, Carleton, CERN, Jožef Stefan Institute, Ohlo Stake, Toronto ATU-RD-MN-0016 Gossip for the ATLAS Inner Tacker at the Super LHC (SLHC) Marko Mikuž CPPM, Genova, Milano, LAPP, LPNHE, LENL, Ohlo SLAC, Toronto, Washington, Wuppertal ATU-RD-MN-0016 Bixel Local Expression of Interest Research and Development Local M. Gilchriese CPPM, Genova, Milano, LAPP, LPNHE, LENL, Ohlo SLAC, Toronto, Washington, Wuppertal ATU-RD-MN-0017 Pixel Local R8D on Phanar Pixel Sensor Technology for the ATLAS D. Muensterman Prague, LAI Carsa, Bonn, HD Berlin, TU Dorhmuch, MPP Munich, Udine, Dorhmuch, MPP Munich, Udine, Uvergool, UMM Abuguergue, USCS Saria Cruz, Variancia, SCEN, Geneva, Giasgow, Krakow, Krakow, Krakow, Kraku, Hampton, Santa Cruz, LBNL, New York, Milande ATL-PA-MN-0002 ABC-Next Reposal to develop ABC-Next, a readout ASIC for the S- Sineffall, Cambridge, London, Ljubijana, Santa Cruz, Variancia, Santa Cruz, Variancia, Santa Cruz, Variancia, Santa Cruz, BNL, New York, Milande ATL-PA-MN-0002 Neino	oard	o USG	ATL-PA-MN-0007	3D Sensors	Development, Testing and Industrialization of Full-3D Active-Edge and Modified-3D Silicon Radiation Pixel Sensors	Cinzia Da Vià, Sherwood Parker, Giovanni Darbo	CNM Barcellona, Bonn, Freiburg, Genova , Glasgow, Hawaii, LBNL, Manchester, Oslo, SINTEF Oslo, Prague, MBC/Stanford, IRST Trento, Valencia
ATU-RD-MN-0012 Diamond Pixel Modules for the High Luminosity ATLAS Marko Miku2 Bonn, Carleton, CERN, Jožef Stefan Institute, Ohio State, Toronto, ATU-RD-MN-0016 Gossip RAD proposal to develop the gaseous pixel elector (SLHC) Harry van der Graaf NIKHEF, SACLAY, Twente ATU-RD-MN-0016 Gossip Pixel Local Supports for Pixel Detector Uggrades M. Gilchriese CPPM, Genova, Milano, LAPP, LPNHE, LBNL, Ohio, SLAC, Toronto, Washington, Wuppertal ATU-RD-MN-0018 Pixel Detector Uggrades Supports for Pixel Detector Uggrades D. Muensterman Prapue, LAL Orsay, Bonn, HU Berlin, TU Dortmund, MPP Muinth, MPI Muinth, Udine, Urerpool, UNN Albuguerque, UCSC Santa Cruz, Valencia ATU-RD-MN-0019 Planar Pixel Reb on Planar Pixel Sensor Technology for the ATLAS D. Muensterman Prapue, LAL Orsay, Bonn, HU Berlin, TU Dortmund, MPP Muintogs, CERN, Geneva, Giasgow, Krakow, Katkow, Katkow, ATU-RD-MN-0002 ABC-Next ATLAS Silicon Tracker Module Design Cambridge, CERN, Geneva, Giasgow, Krakow, Milano ATL-PA-MN-0004 Staves Development of non-inverting Silicon strip Tracking Layers Hartmut Sadrozinski KEK, Tsukuba, Liverpool, Glasgow, Lancaster, Nilano ATL-PA-MN-0005 SiGe chips Evaluation of Silicon-Germanium (SiGe) Bioplar Technologies for Use in an Upgraded ATLAS Detector In the ATLAS Inter Tracker at the Super LHC (SLHC) KEK, Geneva, Freiburg, M	ته ۵	sd t	ATU-RD-MN-0010	Thin Pixels	R&D on thin pixel sensors and a novel interconnection technology for 3D integration of sensors and electronics	H-G. Moser	Bonn, Dortmund, Interon, MPP Munich, Oslo
Sign of the second se	xecutive	ente	ATU-RD-MN-0012	Diamond	Diamond Pixel Modules for the High Luminosity ATLAS Inner Detector Upgrade	Marko Mikuž	Bonn, Carleton, CERN, Jožef Stefan Institute, Ohio State, Toronto
ATU-RD-MN-0016 Pixel Local Supports Expression of Interest Research and Development Local Supports M. Gilchriese CPPM, Genova, Milano, LAPP, LPNHE, LBNL, Ohio, SLAC, Toronto, Washington, Wuppertai ATU-RD-MN-0019 Planar Pixel R&D on Planar Pixel Sensor Technology for the ATLAS D. Muensterman Prague, LAL Orsay, Bonn, HU Berlin, TU Dortmund, MPP Munich, MPI Munich, Udine, Liverpool, UNM Albuquergue, UCSC Santa Cruz, Walede Dabrowski ATL-PA-MN-0002 ABC-Next ATLAS Silicon Tracker Module Design Francis Anghinolfi, Walede Dabrowski Cambridge, CEAN, Geneva, Giasgow, Krakow, Valencia ATL-PA-MN-0002 ABC-Next Development and Integration of Modular Assemblies with Reduced Services for the ATLAS Silicon Strip Tracking Layers C. Haber, M. Gilchriese BNL, Hampton, Santa Cruz, Uallan, Santa Cruz, Valencia ATL-PA-MN-0005 n-in-p sensors Development of non-inverting Silicon strip detectors for the ATLAS ID upgrade Hartmut Sadrozinski KEK, Tsukuba, Liverpool, Giasgow, Lancaster, Sheffield, Cambridge, London, Freiburg, MPL, Ujubijana, Prague, Barcelona, Valencia, Santa Cruz, BNL ATL-PA-MN-0006 SiGe chips Evaluation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgraded ATLAS Detector Alex Grillo, S. Rescia NIZP3, CNN Barcelona, Valencia, Santa Cruz, BNL ATU-RD-MN-0007 Modules Rob mark the Module and Service Structure design for the ATLAS Inner Tracker at the Super LFC (SUHC) NIZP3, CNN B		prese	ATL-P-MN-0016	Gossip	R&D proposal to develop the gaseous pixel detector Gossip for the ATLAS Inner Tracker at the Super LHC (SLHC)	Harry van der Graaf	NIKHEF, SACLAY, Twente
ATU-RD-MN-0019 Planar Pixel R&D on Planar Pixel Sensor Technology for the ATLAS D. Muensterman Prague, LAL Orsay, Bonn, HU Berlin, TU ATU-RD-MN-0019 Planar Pixel Inner Detector Upgrade D. Muensterman Prague, LAL Orsay, Bonn, HU Berlin, TU ATL-PA-MN-0002 ABC-Next ATLAS Silicon Tracker Module Design Francis Angliniofi, Wiadek Dabrowski Windek Dabrowski Cambridge, CERN, Geneva, Glasgow, Krakow, Wiadek Dabrowski ATL-PA-MN-0002 ABC-Next ATLAS Silicon Tracker Module Design Francis Angliniofi, Wiadek Dabrowski KEK, Liverpool, London, Ljubljana, Santa Cruz, Valencia, Valencia ATL-PA-MN-0005 staves Development of non-inverting Silicon strip Tracking Layers Hartmut Sadrozinski KEK, Sukuba, Liverpool, Glasgow, Lancaster, Sheffield, Cambridge, London, Freiburg, MPI, Ujubljana, Prague, Barcelona, Valencia, Santa Cruz, BNL ATL-PA-MN-0005 siGe chips Evelopment of non-inverting Silicon strip detectors for the ATLAS ID upgrade Hartmut Sadrozinski KEK, Keneva, Freiburg, Melbourne, Valencia, Santa Cruz, BNL ATU-RD-MN-0007 Modules SiGe chips Eveloation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgraded ATLAS Detector Hartmut Sadrozinski KEK, Keneva, Freiburg, Melbourne, Valencia, Tuu-RD-MN-00009 SoS Sige chips Suppression of Interest: Evaluations on the Silico on Tracker Upgrade	2	al l	ATU-RD-MN-0016	Pixel Local Supports	Expression of Interest Research and Development Local Supports for Pixel Detector Upgrades	M. Gilchriese	CPPM, Genova , Milano , LAPP, LPNHE, LBNL, Ohio, SLAC, Toronto, Washington, Wuppertal
ATL-PA-MN-0002 ABC-Next Proposal to develop ABC-Next, a readout ASIC for the S- ATLAS Silicon Tracker Module Design Francis Anghinolfi, Wiadek Dabrowski Cambridgs, CERN, Geneva, Glasgow, Krakow, KEK, Liverpool, London, Ljubijana, Santa Cruz, Valencia ATL-PA-MN-0004 Staves Development and Integration of Modular Assemblies with Layers C. Haber, M. Gilchriese BNL, Hampton, Santa Cruz LBNL, New York, Milano ATL-PA-MN-0004 Staves Development of non-inverting Silicon Strip Tracking Layers Hartmut Sadrozinski KEK, Tsuuba, Liverpool, Glasgow, Lancaster, Sheffield, Cambridge, Cenn, Geneva, Faleburg, MPI, Ljubijana, Prague, Barcelona, Valencia, Santa Cruz, BNL ATL-PA-MN-0005 n-in-p sensors Evaluation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgrade dTLAS Detector Alex Grillo, S. Rescia IN2P3, CNM Barcelona, BNL, UC Santa Cruz, U of Pennsylvania ATU-RD-MN-0005 SiGe chips Evaluation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgrade dTLAS Detector Alex Grillo, S. Rescia Nobinobu Unno KEK, Geneva, Freiburg, Melbourne, Valencia, Tsukuba ATU-RD-MN-0005 SoS Expression of Interest: Evaluations on the Silicon on ArtLAS electronics readout upgrade Ping Gui, Jingbo Ye SMU Dalas. ATU-RD-MN-0001 Opto Research and Development of Power Distribution Ataliation Test Programme for the ATLAS Upgrade Marc Weber BNL, Bon, CERN, Krakow, LBNL,	ved b	sodo	ATU-RD-MN-0019	Planar Pixel	R&D on Planar Pixel Sensor Technology for the ATLAS Inner Detector Upgrade	D. Muensterman	Prague, LAL Orsay, Bonn, HU Berlin, TU Dortmund, MPP Munich, MPI Munich, Udine , Liverpool, UNM Albuquerque, UCSC Santa Cruz.
ATL-PA-MN-0004 Staves Development and Integration of Modular Assemblies with C. Haber, M. Gilchriese BNL, Hampton, Santa Cruz LBNL, New York, Milano ATL-PA-MN-0005 n-in-p sensors Development of non-inverting Silicon Strip Tracking Layers Hartmut Sadrozinski KEK, Tsukuba, Liverpool, Giasgow, Lancaster, Sheffield, Cambridge, London, Freiburg, MPL, Ljubiljana, Prague, Barcelona, Valencia, Santa Cruz, BNL ATL-PA-MN-0006 SiGe chips Evaluation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgraded ATLAS Detector Alex Grillo, S. Rescia IN2P3, CNM Barcelona, BNL, UC Santa Cruz, U of Pennsylvania ATU-RD-MN-0006 SiGe chips Evaluation of Interest: Evaluations on the Super LHC (SLHC) Valencia, Tsukuba ATU-RD-MN-0009 SoS Sasphire 0.25 micron technology for ASIC developments in the ATLAS Upgrade Ping Gui, Jingbo Ye SMU Dallas. ATU-RD-MN-0001 Opto Reladiation Test Programme for the ATLAS Upgrade Cigdem Issever Taiwan, Ljubljana, Ohio, Oklahoma, Oxford, SMU Dallas. ATU-RD-MN-0001 Thermal Research and Development of Power Distribution Marc Weber BNL, Bonn, CERN, Krakow, LBNL, RAL, Wuppertal, Yale ATU-RD-MN-0001 Thermal Furure ATLAS Silicon Tracker Upgrade Georg Viehhauser BNL, CERN, Genova, Glasgow, KEK, LBNL, Livergool, Marseille, NIKHEF, Oxford, Prague, QMUL, RAL, Sheffield	oprov	J, Pr	ATL-PA-MN-0002	ABC-Next	Proposal to develop ABC-Next, a readout ASIC for the S- ATLAS Silicon Tracker Module Design	Francis Anghinolfi, Wladek Dabrowski	Cambridgs, CERN, Geneva, Glasgow, Krakow, KEK, Liverpool, London, Ljubljana, Santa Cruz, Valencia
ATL-PA-MN-0005n-in-p sensorsDevelopment of non-inverting Silicon strip detectors for the ATLAS ID upgradeHartmut SadrozinskiKEK, Tsukuba, Liverpool, Glasgow, Lancaster, Sheffield, Cambridge, London, Freiburg, MPI, Ljubljana, Prague, Barcelona, Valencia, Santa Cruz, BNLATL-PA-MN-0006SiGe chipsEvaluation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgraded ATLAS Detector Technologies for Use in an Upgraded ATLAS DetectorAlex Grillo, S. ResciaIN2P3, CNM Barcelona, BNL, UC Santa Cruz, U of PennsylvaniaATU-RD-MN-0007ModulesR&D towards the Module and Service Structure design for the ATLAS Inner Tracker at the Super LHC (SLHC)Yoshinobu UnnoKEK, Geneva, Freiburg, Melbourne, Valencia, TsukubaATU-RD-MN-0009SoSSosSaphire 0.25 micro technology for ASIC developments in the ATLAS electronics readout upgradePing Gui, Jingbo YeSMU Dallas.ATU-RD-MN-0008PoweringReadiation Test Programme for the ATLAS opto-Electronic Rediato Test Programme for the ATLAS opto-Electronic Schemes for the ATLAS Silicon Tracker UpgradeCigdem IsseverTaiwan, Ljubljana, Ohio, Oklahoma, Oxford, SMU Dallas.ATU-RD-MN-0008PoweringResearch and Development of Power Distribution Schemes for the ATLAS Silicon Tracker UpgradeMarc WeberBNL, Bonn, CERN, Krakow, LBNL, RAL, Wuppertal, YaleATL-P-MN-0011Thermal ManagementR&D on an Optical Alignment System for the ATLAS MonitoringJ. Dubbert, S. Horvat, O. Kortner, H. Kroha, H."Chah, H."Coha, H."Coha, H."Cohah, H."Cohah, H."CohahJ. Dubbert, S. Horvat, MPI Munich	AF	Ľ	ATL-PA-MN-0004	Staves	Development and Integration of Modular Assemblies with Reduced Services for the ATLAS Silicon Strip Tracking Layers	C. Haber, M. Gilchriese	BNL, Hampton, Santa Cruz LBNL, New York, Milano
ATL-PA-MN-0006SiGe chipsEvaluation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgraded ATLAS DetectorAlex Grillo, S. ResciaIN2P3, CNM Barcelona, BNL, UC Santa Cruz, U of PennsylvaniaATU-RD-MN-0007ModulesR&D towards the Module and Service Structure design for the ATLAS Inner Tracker at the Super LHC (SLHC)Yoshinobu UnnoKEK, Geneva, Freiburg, Melbourne, Valencia, TsukubaATU-RD-MN-0009SoSExpression of Interest: Evaluations on the Silicon on Sapphire 0.25 micron technology for ASIC developments in the ATLAS electronics readout upgradePing Gui, Jingbo YeSMU Dallas.ATL-PA-MN-0001OptoRadiation Test Programme for the ATLAS Opto-Electronic Schemes for the ATLAS Silicon Tracker UpgradeCigdem IsseverTaiwan, Ljubljana, Ohio, Oklahoma, Oxford, SMUATL-PA-MN-0001PoweringResearch and Development of Power Distribution Schemes for the ATLAS Silicon Tracker UpgradeMarc WeberBNL, Bonn, CERN, Krakow, LBNL, RAL, Wuppertal, YaleATL-P-MN-0011Thermal ManagementFuture ATLAS tracker Thermal Management Research ProgrammeGeorg ViehhauserBNL, CERN, Genova, Glasgow, KEK, LBNL, Liverpool, Marseille, NIKHEF, Oxford, Prague, QMUL, RAL, SheffieldATL-P-MN-0026ID AlignmentR&D on an Optical Alignment System for the ATLAS MonitoringJ. Dubbert, S. Horvat, MPI MunichMoluchTracker Upgrade at SLHC Based on Straightness MonitoringJ. Dubbert, S. Horvat, MPI MunichMPI Munich			ATL-PA-MN-0005	n-in-p sensors	Development of non-inverting Silicon strip detectors for the ATLAS ID upgrade	Hartmut Sadrozinski	KEK, Tsukuba, Liverpool, Glasgow, Lancaster, Sheffield, Cambridge, London, Freiburg, MPI, Ljubljana, Prague, Barcelona, Valencia, Santa Cruz, BNL
ATU-RD-MN-0007ModulesR&D towards the Module and Service Structure design for the ATLAS Inner Tracker at the Super LHC (SLHC)Yoshinobu UnnoKEK, Geneva, Freiburg, Melbourne, Valencia, TsukubaATU-RD-MN-0009SoSExpression of Interest: Evaluations on the Silicon on Sapphire 0.25 micron technology for ASIC developments in the ATLAS electronics readout upgradePing Gui, Jingbo YeSMU Dallas.ATL-PA-MN-0001OptoRadiation Test Programme for the ATLAS Opto-Electronic Readout System for the SLHC for ATLAS upgradesCigdem IsseverTaiwan, Ljubljana, Ohio, Oklahoma, Oxford, SMUATU-RD-MN-0008PoweringResearch and Development of Power Distribution Schemes for the ATLAS Silicon Tracker UpgradeMarc WeberBNL, Bonn, CERN, Krakow, LBNL, RAL, Wuppertal, YaleATL-P-MN-0011Thermal ManagementFuture ATLAS tracker Thermal Management Research ProgrammeGeorg ViehhauserBNL, CERN, Genova, Glasgow, KEK, LBNL, Liverpool, Marseille, NIKHEF, Oxford, Prague, QMUL, RAL, SheffieldATL-P-MN-0026ID AlignmentR&D on an Optical Alignment System for the ATLAS MonitoringJ. Dubbert, S. Horvat, 0. Kortner, H. Kroba, HG. Moser, R. RichterMPI Munich			ATL-PA-MN-0006	SiGe chips	Evaluation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgraded ATLAS Detector	Alex Grillo, S. Rescia	IN2P3, CNM Barcelona, BNL, UC Santa Cruz, U of Pennsylvania
ATU-RD-MN-0009SoSExpression of Interest: Evaluations on the Silicon on Sapphire 0.25 micron technology for ASIC developments in the ATLAS electronics readout upgradePing Gui, Jingbo YeSMU Dallas.ATU-RD-MN-0001OptoRadiation Test Programme for the ATLAS opto-Electronic Readout System for the SLHC for ATLAS upgradesCigdem IsseverTaiwan, Ljubljana, Ohio, Oklahoma, Oxford, SMUATU-RD-MN-0008PoweringResearch and Development of Power Distribution Schemes for the ATLAS Silicon Tracker UpgradeMarc WeberBNL, Bonn, CERN, Krakow, LBNL, RAL, Wupertal, YaleATL-P-MN-0011Thermal ManagementFuture ATLAS tracker Thermal Management Research ProgrammeGeorg ViehhauserBNL, CERN, Genova, Glasgow, KEK, LBNL, Liverpool, Marseille, NIKHEF, Oxford, Prague, QMUL, RAL, SheffieldATL-P-MN-0026ID AlignmentR&D on an Optical Alignment System for the ATLAS Tracker Upgrade at SLHC Based on Straightness MonitoringJ. Dubbert, S. Horvat, O. Kortner, H. Kroha, HG. Moser, R. RichterMPI Munich		itor	ATU-RD-MN-0007	Modules	R&D towards the Module and Service Structure design for the ATLAS Inner Tracker at the Super LHC (SLHC)	Yoshinobu Unno	KEK, Geneva, Freiburg, Melbourne, Valencia, Tsukuba
ATL-PA-MN-0001 Opto Radiation Test Programme for the ATLAS Opto-Electronic Readout System for the SLHC for ATLAS upgrades Cigdem Issever Taiwan, Ljubljana, Ohio, Oklahoma, Oxford, SMU ATL-PA-MN-0008 Powering Research and Development of Power Distribution Schemes for the ATLAS Silicon Tracker Upgrade Marc Weber BNL, Bonn, CERN, Krakow, LBNL, RAL, Wuppertal, Yale ATL-P-MN-0011 Thermal Management Future ATLAS tracker Thermal Management Research Programme Georg Viehhauser BNL, CERN, Genova, Glasgow, KEK, LBNL, Liverpool, Marseille, NIKHEF, Oxford, Prague, QMUL, RAL, Sheffield ATL-P-MN-0026 ID Alignment R&D on an Optical Alignment System for the ATLAS Nonitoring J. Dubbert, S. Horvat, O. Kortner, H. Kroha, HG. Moser, R. Richter MPI Munich		betec	ATU-RD-MN-0009	SoS	Expression of Interest: Evaluations on the Silicon on Sapphire 0.25 micron technology for ASIC developments in the ATLAS electronics readout upgrade	Ping Gui, Jingbo Ye	SMU Dallas.
Wight ATU-RD-MN-0008 Powering Research and Development of Power Distribution Schemes for the ATLAS Silicon Tracker Upgrade Marc Weber BNL, Bonn, CERN, Krakow, LBNL, RAL, Wuppertal, Yale ATU-RD-MN-0001 Thermal Management Future ATLAS tracker Thermal Management Research Programme Georg Viehhauser BNL, CERN, Genova, Glasgow, KEK, LBNL, Liverpool, Marseille, NIKHEF, Oxford, Prague, QMUL, RAL, Sheffield ATL-P-MN-0026 ID Alignment R&D on an Optical Alignment System for the ATLAS Tracker Upgrade at SLHC Based on Straightness Monitoring J. Dubbert, S. Horvat, O. Kortner, H. Kroha, HG. Moser, R. Richter MPI Munich	T	ps er []	ATL-PA-MN-0001	Opto	Radiation Test Programme for the ATLAS Opto-Electronic Readout System for the SLHC for ATLAS upgrades	Cigdem Issever	Taiwan, Ljubljana, Ohio, Oklahoma, Oxford, SMU
ATL-P-MN-0011 Thermal Management Research Management Research Programme Georg Viehhauser BNL, CERN, Genova, Glasgow, KEK, LBNL, Liverpool, Marseille, NIKHEF, Oxford, Prague, QMUL, RAL, Sheffield ATL-P-MN-0026 ID Alignment R&D on an Optical Alignment System for the ATLAS J. Dubbert, S. Horvat, O. Kortner, H. Kroha, HG. Moser, R. Richter MPI Munich	ixe	stri nne	ATU-RD-MN-0008	Powering	Research and Development of Power Distribution Schemes for the ATLAS Silicon Tracker Upgrade	Marc Weber	BNL, Bonn, CERN, Krakow, LBNL, RAL, Wuppertal, Yale
ATL-P-MN-0026 ID Alignment R&D on an Optical Alignment System for the ATLAS J. Dubbert, S. Horvat, MPI Munich Tracker Upgrade at SLHC Based on Straightness O. Kortner, H. Kroha, HG. Moser, R. Richter			ATL-P-MN-0011	Thermal Management	Future ATLAS tracker Thermal Management Research Programme	Georg Viehhauser	BNL, CERN, Genova , Glasgow, KEK, LBNL, Liverpool, Marseille, NIKHEF, Oxford, Prague, QMUL, RAL, Sheffield
			ATL-P-MN-0026	ID Alignment	R&D on an Optical Alignment System for the ATLAS Tracker Upgrade at SLHC Based on Straightness Monitoring	J. Dubbert, S. Horvat, O. Kortner, H. Kroha , HG. Moser, R. Richter	MPI Munich

G. Darbo - INFN / Genova

Upgrade di ATLAS a SLHC

Sestri Levante, 13 November 2008 27

Calorimeter, Muon & Other R&D

Approved	Short			
Document 😝	name 🌲	Title	Principle contact 🖨	Institutes 🗧
ATL-P-MN-0015	End-Cap LArCAL	A Proposal for R&D to establish the limitations on the operation of the ATLAS End-Cap Calorimeters at high LHC Luminosities	Peter Shacht	Arizona, JINR Dubna, IEP Kosice, Mainz, LPI Moscow, MPI Munich, BINP Novosibirsk, IHEP Protvino, TRIUMF Vancouver, Wuppertal
ATU-RD-MN-0001	Lar FE Electronics	R&D Towards the Replacement of the Liquid Argon Calorimeter Front End Electronics for the sLHC	G. Brooijmans	CERN, LAL-Orsay, Milano , MPI Munich, BNL, Columbia, SMU, New York, Pennsylvania
ATU-RD-MN-0002	LAr Optolink	R and D of a radiation resistant high speed optical link for the ATLAS Liquid Argon Calorimeter readou	Jingbo Ye	
ATU-RD-MN-0003	LAr ROD	Research and Development of Readout Driver (ROD) for the upgrade of the Liquid Argon Calorimeter Front-End Readout	Hucheng Chen	Arizona, BNL, CERN, LAPP, Milano, Stony Brook
ATU-RD-MN-0004	FCAL Cold	Development of new ATLAS Forward Calorimeters for the Upgrade	J.Rutherfoord	Arizona, Carleton, Toronto.
ATU-RD-MN-0015	Tile Electronics	R&D on Tile Calorimeter Electronics for the sLHC	C. Bohm, L. Price, J. Valls Ferrer	Argonne, Barcelona, Bratislava, CERN, Chicago, Lisbon, Pisa , Prague, AS CR, Stockholm, Valencia.
ATU-RD-MN-0011	Micromegas	R&D project project on micropattern muon chambers fo SLHC	V. Polychronakos, J. Wotschack	Arizona, Athens (U, NTU, Demokritos), Brookhaven, CERN, Harvard, Istanbul (Bogaziçi, Doğuş), Naples , Seattle, USTC Hefei, South Carolina, St. Petersburg, Shandong, Thessaloniki
ATL-P-MN-0014	Segmented Straw	R&D of segmented straw tracker detector for the ATLAS Inner Detector Upgrade	Vladimir Peshekhonov	JINR Dubna, Lebedev Moscow, Moscow, Warsaw
ATL-P-MN-0028	TGC	R&D on Optimizing a detector based on TGC technology to provide tracking and trigger capabilities in the MUON Small-Wheel region at SLHC	G. Mikenberg	BNL, The Weizmann Institute, Tel Aviv, Technion
ATL-P-MN-0029	MDT R/O	Upgrade of the MDT Readout Chain for the SLHC	R. Richter	LMU & MPI Munic
ATL-P-MN-0030	MDT-Gas	R&D for gas mixtures for the MDT detectors of the Muon Spectrometer	P. Branchini	Cosenza, Roma3
ATL-P-MN-0031	MDT- Selective R/O	R&D on Precision Drift-Tube Detectors for Very High Background Rates at SLHC	R. Richter	LMU & MPI Munic
ATL-P-MN-0032	High Rate MDT	R&D on Precision Drift-Tube Detectors for Very High Background Rates at SLHC	R. Richter	LMU & MPI Munic
ATU-RD-MN-0013	Fast Track Trigger	Proposal to prepare a technical design report for FTK, a hardware track finder upgrade to the ATLAS trigger	M. Shochet	Chicago, Frascati , Harvard, Illinois, Pisa , Roma 1 .
ATU-RD-MN-0014	LVL1-Calo	ATLAS Level-1 Calorimeter Trigger Upgrade	N. Gee	Birmingham, Heidelberg, Mainz, London, Stockholm, RAL, Michigan, ANL
ATU-RD-MN-0018	Versatile Link	The Versatile Link Common Project	Francois Vasey	CERN, Strasbourg, Oxford, SMU Dallas.
ATL-PA-MN-0003	Radiation BG	Radiation background benchmarking at the LHC and simulations for an ATLAS upgrade at the SLHC	Ian Dawson	Sheffield, Arizona, Ljubljana
	Forward Protons	ATLAS FP: A project to install forward proton detectors at 220 m and 420 m upstream and downstream of the ATLAS detector	A. Brandt	

Approved by Executive Board Lol, Proposal presented to USG

INFN

Calorimeter Muon Trigger, Elec, ...

G. Darbo - INFN / Genova

Upgrade di ATLAS a SLHC

Sestri Levante, 13 November 2008 28

Some R&D where INFN Involved

INFN

- See Paola's talk (in a more general framework) and LVL1 Trigger
- The idea is to make a LVL1.5 Pixel track trigger using Pixel information. Data into FBK should be get by intercepting the link from detector to ROD.
- LNF group involved. They are studying cluster algorithms (first CPU intensive step for track reconstruction) and their optimisation for the implementation into FPGA (Xilinx evaluation board). Next step in 2009÷2010 make a dedicated board.
- Status approved by ATLAS EB to get a TDR.
- - See Claudio's talk, target to IBL and SLHC internal Pixel Layers
- - See Roberto's talk, target to IBL and SLHC outer Pixel layer (fixed Pixels)
- Local Pixel Supports (low material budget)
 - See Danilo's talk
- Calorimeter FE Electronics and R/O
 - See Mauro's talk

Pixel Planar Sensors

Planar Pixel sensor R&D goes two ways:

- Cheap technology (single side like n-in-p) for large area
- Push radiation hard and charge collection for inner Pixel layer (as alternative solution of 3D) for the inner pixel layers

R&D looks at:

INFN

- *n/p bulk materials, DOFX, MCz, etc -> cost / radiation hard*
- Slim edge, active edge -> small dead area if module not tiled in Z

- Expertise in device modelling and measurements.
- More recently looking at application of same technique to 3D sensors (presently not covered by other groups) together GE, TN (GR5) TS (GR5) and IRST/FBK (TN).

MDT Gas R&D - 1/2

Measurement of the R-t relation of faster gases (reduce occupancy) Ar:CF₄ (80:20) / (93:7) and comparison with ATLAS standard Ar:CO₂ (93:7)

- Study spatial resolution, gas gain, ageing.
- Study of the time slewing corrections for Ar:CO₂ standard gas mixture
- Comparison of the R-t results with those coming from auto-calibration.

Experimental setup

INFN

- CERN H8 test beam
- Precise Y and θ support stage for MDT
- 5 planes of μ strips with 5 μ m extrapolated resolution and 95% efficiency.

MDT Gas R&D - 2/2

- Look standard ATLAS mixture
- Right plot shows R (extrapolated from silicon telescope) vs t measured by TDC.
- Telescope covers only 6 mm in Y. Precise vertical movement to cover an entire MDT tube.

Next steps.

INFN

- Complete analysis and study of time slewing corrections for the standard gas mixture.
- Start looking at "fast" mixtures

Status: LoI to ATLAS USG

• *ATL-P-MN-0030 – CS, RM3*

Forward Muons - Micromegas

- With the luminosity increase at the SLHC the background of photons and neutrons in ATLAS is expected to scale accordingly.
 - This concerns the CSCs (covering an area of 27 m²), the MDTs and TGCs of the Small Wheels (120 m²) and the inner rings of the MDTs and TGCs in the Big Wheels (85 m²). These chambers would be candidates to be replaced.

INFN

Micromegas as Candidate Technology

- Combine triggering and tracking functions
- Matches required performances:
 - Spatial resolution ~ 100 μm (Θ_{track} < 45°)
 - Good double track resolution
 - Time resolution ~ 5 ns
 - Efficiency > 98%
 - Rate capability > 5 kHz/cm²

- Potential for going to large areas ~1m x 2m with industrial processes (cost effective)
- Prototype P1:
 - 450mm x 350mm active area
 - Different strip patterns (250, 500, 1000, 2000 µm pitch; 450mm and 225 mm long)
 - Drift gap: 2-5 mm

Ref.: J. Wotschack – ATLAS Muon Week, 28 / 10 / 2008

H6 Test Beam – MM Spatial Resolution

P1 tested @ CERN H6 beam line in November 2007 & June to August 2008

•120 GeV pion beam

Strip pitch: 250 μ m Gas: Ar:CF₄:iC₄H₁₀ (88:10:2) Drift field: 200 V/cm

Track impact angle: 90°

MM intrinsic resolution $\Rightarrow \sigma(MM) \le 40 \ \mu m$

Micromegas as TPC → Direction to go

- Each micromegas gap delivers a set of space points, the more the track is inclined the more space points are available
- Solves the problem of spatial resolution for large track inclination

INFN

Micromega – What Learned & Next Steps

What learned so far:

- MM is very robust: no damage from sparks
- Non-flammable gases available
- Excellent space resolution with small strip pitch
- MM as TPC will give track segments; needs time measurement (ns)
- Next Steps (2009)
 - Trigger capability to be proven with faster electronics
 - Construction and test of 1300 x 400 mm² prototype
 - Construction has started in CERN/TS-DEM; completed early 2009
 - Test beam in May 2009

Status: Approved proposal by ATLAS EB

• ATL-RD-MN-0011 – NA et al.

Conclusions

- Nevertheless the exploit of the potential of physics of LHC will include the high luminosity upgrade
- The upgrade will happen with two major milestones: Phase I & II

ATLAS for Phase I

- The major upgrade project is the Pixel IBL
- Project organization is moving ahead

ATLAS for Phase II

- Largest project is the new tracker, but other detectors, electronics and trigger have a big role in the upgrade,
- Technical challenges require dedicated **R&D**.
- The international ATLAS community is already well organised in such R&Ds

BACKUP SLIDES - SLHC

G. Darbo - INFN / Genova

Upgrade di ATLAS a SLHC

Sestri Levante, 13 November 2008 38

CERN accelerator complex

G. Darbo - INFN / Genova

LHC & SLHC Luminosity Upgrade

Phase I upgrade

- Enable focusing of the beams to β*=0.25 m in IP1 and IP5 (double operating luminosity 2013). Mainly replace the present triplets with wide aperture quadrupoles based on the LHC dipole cables (Nb-Ti) cooled at 1.9 °K.
- LINAC4 can be brought into operation for the run in 2012 having the potential of increasing the luminosity by a factor 2.
- All together this gives us a factor 4 on whatever we have in 2011.
- Can detector operate a x4 luminosity without upgrade?

Phase II upgrade

- SLHC upgrade after 500 fb⁻¹ accumulated luminosity.
- 18 months shutdown.
- When? Target moved to early 2017.

Upgrade components

Lyn Evans, SLHC-PP kick-off meeting, CERN 9 April 2008

G. Darbo - INFN / Genova

Upgrade di ATLAS a SLHC

Sestri Levante, 13 November 2008 42

Planning ...

Insertable B-Layer - IBL

BACKUP SLIDES - IBL

Limit of FE-I3 Architecture

- Inefficiency is a very steep function of hit rate:
 - Inefficiency is small for B-layer at nominal luminosity;
 - Very much at the limit for LHC "Ultimate Luminosity"
 - Unacceptable for B-layer @
 3.6 cm in 2016 and SLHC
- Bottleneck is congestion in the double columns → FE-I4:
 - In FE-I3 all hits has to be transferred to the EoC buffers;
 - FE-I4 new architecture → "local buffers" inside pixels.
 - New technology: 0.13 µm.

INFN

- 50x250 μm pixel (from 50x400)
- 1.6x1.6 cm² (from 0.7x0.8)

FE-14 Architecture: Obvious Solution to Bottleneck

- >99% or hits will not leave the chip (not triggered)
 - So don't move them around inside the chip! (this will also save digital power!)
- ♥ This requires local storage and processing in the pixel array
 - *Possible with smaller feature size technology (130nm)*

FE-I4 – "Pixel Collaboration Chips"

Pixel (FE-I4p) and Opto chips submitted 24/3/08:

"Pixel Collaboration Chip"

- Prototypes for new FE-I4 in 0.13 μm CMOS
- Designing labs: Bonn, **Genova**, LBNL, Marseille, Nikhef,

FE-I4 schedule

INFN

- Full chip submission by end of the year (INFN funds sj)
- Module prototyping with sensors in 2009
- Final chip version (bug correction) by end of 2009.
- Richieste Finanziarie:
 - Genova: sj (2008) + rich. (2009)

3D Sensors – Planar Sensors

- 3D sensors sustain higher radiation dose: shorter traveling distance (trapping).
 - Collaboration with FBK/IRST (TN) TR Planar sensors – Progetto Gr.V TRIDEAS (technology)
 - Genova module prototypes with FE-I4
- Improved planar sensors
 - Udine participates to an ATLAS R&D program to improve planar sensors (possible use for B-layer replacement). Activity on sensor design/qualification.

Technology selected in 2010 (prototypes)

- Both technologies will be used in SLHC. 3D internal layers, Planar external layers.
- Richieste Finanziarie:
 - Genova Sensori 3D
 - Udine Sensori Planari

FBK – Holes made with DRIE (bought by INFN)

INFN

Planar Sensors

R&D for SLHC (and B-layer replacement) on planar silicon technologies mainly to reduce cost (for SLHC outer radii), increase radiation tolerance and reduce inactive area (as option for B-layer Replacement):

- Bulk material: n-type (n-on-n current pixel sensor) or p-type (single side cost effective)
- Thin sensors (50÷75µm thickness): reduce volume leakage current (noise, power)
- Active edge: no need of shingling or double face stave for hermetic coverage
- Slim edge: guard rings from 1100µm to ~100µm

Diamonds

INFN

- No cooling;
- No leakage current;
- Small capacitance -> small noise;
- High radiation hard -> B-layer

Stave Material R&D

Path to reduce Local Support material:

- Thermal Conductive Carbon Foams: very low density, acceptable thermal performance.
- Lower (than C₃F₈) temperature coolant (CO₂): -35°, smaller pipes, lower fluid mass.
- No shingling in z (sensor active/slim edges)

FOAM Supplier K (W/mŸK) δ (g/cc) ALLCOMP / 1 0.18 ~6 ALLCOMP / 2 0.21 n/a POCO / 1 0.09 ~17 (z), ~6(xy) POCO/2 0.55 135 (z), 45(xy) **KOPPERS** 0.21 ~30 (z?)

BACKUP SLIDES – R&D SLHC

G. Darbo - INFN / Genova

Upgrade di ATLAS a SLHC

Sestri Levante, 13 November 2008 51

Additional Information on B-Layer (2013) and SLHC (2017)

BACKUP SLIDES

FTK (LV1.5 Trigger)

- FTK R&D group proposes to build a hardware track finder (FTK) as an upgrade to the ATLAS trigger. It will provide global reconstruction of tracks above 1 GeV/c in the silicon detectors, with high quality helix parameters, by the beginning of level-2 trigger processing. FTK can be particularly important for the selection of 3rd-generation fermions (b and T). These have enormous background from QCD jets, which can be quickly rejected in level-2 if reconstructed tracks are available early. TFTK in the next year.
- LNF (A. Annovi, M. Beretta, P.Laurelli, G. Maccarrone, A. Sansoni) propone lo sviluppo e implementazione di algoritmi di clustering
 - Sviluppo e studio di algoritmi di clustering veloce da implementare in hardware dedicato;
 - simulazione e studio delle implementazioni hardware e delle rispettive caratteristiche e prestazioni;
 - realizzazione e test di prototipi hardware. Durante il 2009 di studiare l'algoritmo e valutare qual è l'hardware più adatto usando schede evaluation board Xilinx.

Strawman07 Layout

Pixels: Short (2.4 cm) μ-strips (stereo layers): Long (9.6 cm) μ-strips (stereo layers):

INFN

r = 5cm, 12cm, 18cm, 27cm $z=\pm40$ cmr = 38cm, 49cm, 60cmr = 75cm, 95cm $z=\pm190$ cm

ATLAS project	Expression of Interes Electroni	t: R&D on Tile (cs for the sLHC	Calorimeter
ATLAS Upgrade Document No:	Institute Document No.	Created: 15/04/2008	Page:
		Modified: 22/04/2008	Rev. No.: 1.32

Argonne, Barcelona, Bratislava, CERN, Chicago, Lisbon, Pisa, Prague, AS CR, Stockholm, Valencia.

Abstract

The increased luminosity and radiation levels planned for the upgraded LHC will exceed the level at which some parts of the Tile Calorimeter electronics begin to fail. In this Expression of Interest, we outline the R&D that will be necessary to replace those specific components, but also the components that control and support the ones needing replacement and those whose requirements are likely to be changed by modifications to other parts of ATLAS, in particular the TDAQ system. It seems likely that a large part of the readout electronics for the Tile Calorimeter will need to be redesigned and replaced.

Micropattern Gas Detectors (RD51)

- Standard bulk Micromegas
- Homogeneous stainless steel mesh
- **9** 325 line/inch = 78 μ m pitch
- Wire diameter ~25 μm
- Amplification gap = 128 μm

Micropactern Gas Detector Workshop Nikhef 16-18 April 2008

http://indico.cern.ch/conferenceOtherViews.py ?view=standard&confId=25069

P. IENGO -MPGD Workshop 16-18 April 2008 NIKHEF

Preliminary Track Resolution - CERN H6 - Nov.07

BACKUP SLIDES – USG, PO

G. Darbo - INFN / Genova

Upgrade di ATLAS a SLHC

Sestri Levante, 13 November 2008 58

INFN

SLHC, R&D Kick-off Event

- April 9th a public event is marking the start of R&D for SLHC upgrade.
- LHC upgrade is marked as the highest priority of the European strategy for particle physics (approved by the CERN Council in July 2006).
- Various R&D activities for the LHC luminosity upgrade are now starting, thanks to several national funding sources, additional funding from the CERN member states to CERN (White Paper themes), as well as funding from the European Commission.
- The SLHC-PP (first call of FP-7) project receives funding from the European Commission to coordinate the R&D for SLHC (Project Office), to carry out specific R&D in a few selected subjects

Wednesday 09 April 2008

09:00 Welcome and introduction (15)

Jos Engelen (CERN)

	000 ±go.o (0 ±)
09:15 SLHC physics studies (45)	Michelangelo Mangano (<i>CERN</i>)
10:00 Coffee/tea break (Pas perdus	<u>i</u>)
10:20 SLHC accelerator and injector upgrades (40)	Lyn Evans (<i>CERN</i>)
11:00 Overview of SLHC experiment upgrades (40)	Jordan Nash (CERN)

Next Steps in ATLAS Upgrade Organization

ATLAS Upgrade organization funded by UE FP7-SLHC-PP (Work Package 3)

- Objective for this WP is to establish the formal structures needed for the ATLAS upgrade construction project, and through Technical Documentation, Cost and Schedule planning, establish an initial MoU for the Upgrade Construction.
- Establish a Project Office to address the critical technical integration and coordination issues of the new detectors.
- ATLAS has an Upgrade organization since 4 years:
 - Upgrade Steering Group (USG).
 - Upgrade Project Office
 - Working Groups and R&D projects
 - Layout for the new ID

Reports to WEB page:

http://atlas.web.cern.ch/Atlas/GROUPS /UPGRADES/

ATLAS Upgrade Organization

ATLAS has an Upgrade organization since 4 years:

- Upgrade Steering Group (USG).
- Upgrade Project Office
- Working Groups and R&D projects
- Layout for the new ID
- Agenda on indico:
 - <u>http://indico.cern.ch</u> /categoryDisplay.py?categId=350

INFN

 <u>http://atlas.web.cern.ch/Atlas</u> /<u>GROUPS/UPGRADES/</u>

ATLAS Upgrade Organisation

FP7 - DevDet

WP No.	Work PackageTitle
WP1	DevDet project management
WP2 Common software tools	
WP3 Network for Microelectronic Technologies for High Energy Physics S	
WP4	Project office for Linear Collider detectors
WP5	Coordination office for long baseline neutrino experiments
WP6	Transnational access to CERN test beams and irradiation in the interview of the interview o
WP7	Transnational access to DESY test beam
WP8	Transnational access to European irradiation
WP9	Construction of irradiation facilities at C
WP10	Test beam infrastructures for fully repated detector tests
WP11	Detector prototype testing in test beams

- ♀ 2nd FP7 call to UE submitted at the end of February 2008.
 - 140 projects submitted (~20% chances to be approved).
 - ATLAS (Genova) only in WP3.
 - Not approved by EU!
 - See: <u>http://project-fp7-detectors.web.cern.ch/project%2DFP7%2Ddetectors/</u>