
UPGRADE DI CMS

Interessi e impegni della comunità internazionale

ORGANIZZAZIONE

Struttura di gestione dell'upgrade di CMS

Il comitato si riunisce una volta al mese e si occupa

- di mantenere i rapporti con gli sviluppatori dell'upgrade della macchina
- di monitorare le discussioni interne ai gruppi per diffondere l'informazione ma soprattutto
 - di vagliare le proposte di upgrade

Le proposte di R&D presentate finora sono state 19 (più precisamente classificabili come 3 Pixel, 7 Tracker, 1 Hcal, 2 Mu, 2 Link con le proposte di inclusione del tracker a L1 nel trigger trasversali sui documenti)

oltre a 3 proposte associate a richieste presentate alle agenzie di finanziamento e riportate alla struttura (RD50, UK proposal, US proposal)

Ci sono altre attività che non sono passate attraverso il vaglio del comitato

La scelta del comitato è stata quella di approvare le proposte dopo una procedura di valutazione che stabilisca che l'upgrade proposto può essere una soluzione ai problemi attesi a SLHC e non è impossibile la sua realizzazione considerando i vincoli imposti dal rivelatore e i servizi esistenti.

Non viene in particolare fatta nessuna verifica delle risorse umane e finanziare necessarie e/o a disposizione dei proponenti

- nessuna proposta è stata presentata da gruppi esterni a CMS
- nessun gruppo ha presentato proposte al di fuori del suo campo di lavoro attuale
- all'interno di ciascun rivelatore c'è un accordo di massima per ammettere ogni soluzione posponendo la scelta fra le alternative dopo un congruo periodo di R&D
- l'introduzione del tracker a L1 nel trigger ha generato molteplici punti di vista sulla migliore architettura da scegliere, ma in accordo con l'osservazione precedente la scelta è posposta al momento in cui ci sarà netta evidenza della migliore qualità di una delle proposte
- c'è una netta prevalenza di proposte presentate da/con gruppi US che potrebbe essere semplicemente legata al fatto che la maggior parte degli upgrade di Fase 1 è su rivelatori con partecipazione americana molto rilevante

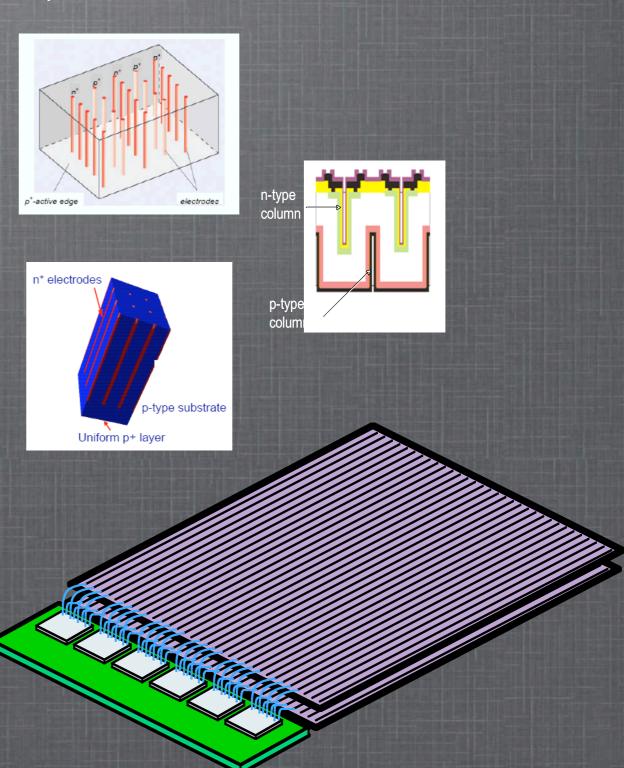
- RD50 è un esperimento approvato che si occupa di sviluppo di sensori di silicio resistenti alle radiazioni
- il proposal UK è un Workpackage di Fase 2 presentato dai gruppi inglesi e già finanziato per il triennio 2008-2010 per
 - sviluppo di elettronica di Front-end e readout per il tracker
 - sviluppo del trigger di primo livello col tracker
 - sostituzione dell'elettronica di trigger off-detector dei calorimetri
 - simulazioni e studi sul tracker a SLHC
- il proposal US è il Workpackage per Fase 1 recentemente presentato per il finanziamento pari a 30 M\$ nel quinquiennio 2008-2013 al DOE per
 - sostituzione del rivelatore Pixel
 - miglioramento del readout di HCAL
 - completamento delle CSC forward
 - sostituzione dell'eletronica di trigger off-detector dei calorimetri

Altre attività

- completamento delle RPC forward (Belgio, Corea etc.)
- interesse italiano per fornire consulenze ai fisici/ingegneri/tecnici che le dovranno produrre
- workpackage presentato dal CERN nell'ambito del 7º programma quadro con fondi dati a CMS per fare partire i comitati organizzativi e sostenere le spese per la preparazione di un TDR per SLHC

UNO SGUARDO ALLA FASE 1

Le scelte strategiche per il funzionamento di CMS a SLHC saranno fatte durante lo sviluppo della Fase 1.

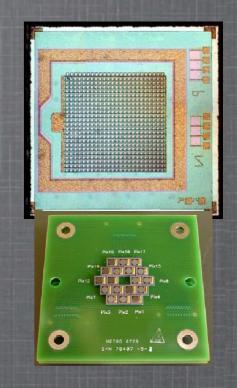

Durante questo periodo è fondamentale partecipare alle attività di R&D, perchè nella Fase 2 sarà predominante il lavoro di ottimizzazione dei componenti.

La costruzione dei rivelatori e la realizzazione dell'elettronica necessaria a fare funzionare CMS a SLHC saranno quindi principalmente effettuate con linee guida determinate della sperimentazione attuata durante lo svolgimento della Fase 1.

PIXEL (PSI, FERMILAB, PURDUE)

Completa sostituzione dei Pixel con tecnologia p-on-p oppure sensori 3D (barrel-PSI e forward-US)

Tentativo di includere un calcolo hardware di molteplicità nei pixel per identificare la posizione dei vertici primari a L1 (e di associare piani diversi localmente per misurare p_T a L1)



HCAL

(MARYLAND, PRINCETON, MINNESOTA, BOSTON)

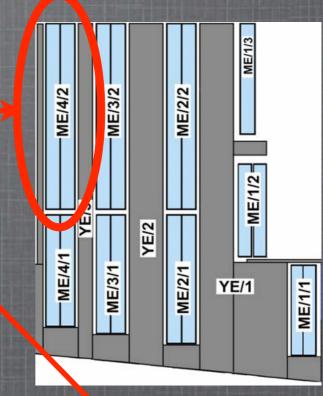
Sostituzione degli HPD con SiPM

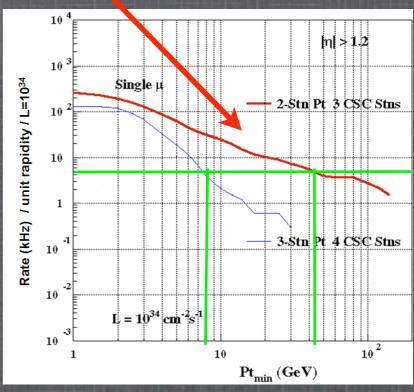
(sensibile miglioramento nel funzionamento in campo magnetico, possibilità di maggiore granularità con introduzione della segmentazione longitudinale)

ECAL/HCAL TRIGGER

(IMPERIAL COLLEGE, WISCONSIN + ...)

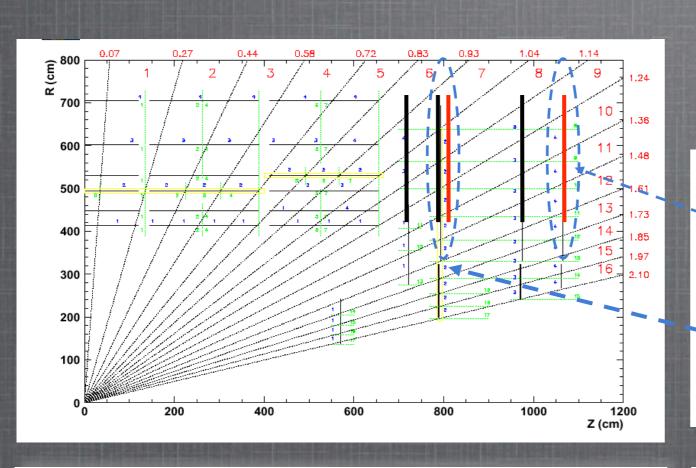
Sostituzione dell'elettronica di trigger regionale passando da distribuzione sincrona (VME) a distribuzione asincrona (μ TCA) Aumento di velocità e della granularità con inclusione di algoritmi più complessi nella definizione delle primitive




CSC (UCLA, FLORIDA, RICE)

Installazione della stazione ME4/2 (condizione necessaria per ridurre la trigger rate in avanti).

Modifiche dell'elettronica di readout (link più veloci, schede digitali) e di trigger (nuove FPGA) con aumento della granularità e del massimo numero di tracce trattabili


Queste modifiche sono fatte con l'intenzione di essere già adattate alla fase 2

RPC

(BELGIO, COREA, CINA, INDIA, PAKISTAN)

Allo studio due opzioni:

- completamento del sistema TDR con l'aggiunta della quarta stazione;
- implementazione di un sistema a 5 stazioni con due stazioni in AND nel secondo layer per abbattere il noise.

- Nessuna responsabilità ufficiale INFN
- Contributo di consulenza di esperti INFN (bachelite, elettronica, HV, gas)
- Management nel contesto dell'intero progetto RPC

- TDR presentato a CMS lo scorso Agosto
- Richiesto approfondimento su alcune problematiche
- Possibile target: installazione durante lo shutdown 2010-2011

COSTI DELLA FASE 1

Rivelatore	Costo (Meuro)
Pixel	8.1
CSC	2.3
RPC	3
DT	0.4
HCAL	2.8
ECAL	0.6
Trigger	2.3
DAQ	1
Totale	20.5

FASE 2

- Sostituzione del Tracker (Pixel inclusi)
- Rifacimento di buona parte dell'elettronica di trigger e readout
- Introduzione di un trigger di L1 con utilizzo di informazioni dal tracciatore

E' evidente che le modifiche in Fase 2 saranno vincolate dalle scelte fatte in Fase 1

Per arrivare a sostituire i pixel in cinque-sei anni sono necessari studi di

- resistenza alle radiazioni
- velocità di readout
- occupanza nel sistema

che porteranno alla scelta dei sensori e alla definizione dell'architettura elettronica e geometrica del sistema.

Senza provare contemporaneamente soluzioni "italiane" per i sensori non ci sarà il tempo per ulteriori programmi di R&D o comunque si avrà un ritardo da recuperare.

L'elettronica di trigger sarà aggiornata in modo da essere già pronta per funzionare in Fase 2.

In particolare saranno introdotte nei trigger calorimetrici e di muoni in avanti "porte" che possano trattare l'informazione del tracker. Il livello a cui saranno introdotte queste "porte" e la loro direzionalità imporrà vincoli sull'architettura di trigger per i muoni e gli elettroni in Fase 2 e sulla qualità e quantità di informazione del tracker.

La scelta della modalità di trigger col tracciatore dipenderà dai test che sarà possibile condurre in questi anni di sviluppo della Fase 1.

IN CONCLUSIONE

Anche se non ci sarà una partecipazione di costruzione alla Fase 1 è importante che l'INFN sostenga gli sforzi di R&D al più presto possibile.

Gli altri istituti sono già finanziati con piani pluriennali di sviluppo e ritardare ulteriormente l'inizio delle attività potrebbe implicare una reale difficoltà nel tenere il passo dell'upgrade potendo essere incisivi