# Studi di Fisica a SLHC

#### Vittorio Del Duca INFN LNF

Incontro ATLAS/CMS per Upgrade a SLHC Sestri Levante 13 Novembre 2008

## LHC kinematic reach



LHC opens up a new kinematic range

100-200 GeV physics is large x physics at Tevatron but small x physics at LHC

x range covered by HERA but Q<sup>2</sup> range must be provided by DGLAP evolution

Feynman x's for the production of a particle of mass M  $x_{1,2} = \frac{M}{14 \text{ TeV}} e^{\pm y}$ 

#### LHC: the near future (5-10 years)

- calibrate the detectors, and re-discover the SM i.e. measure known cross sections: jets,  $W, Z, t\bar{t}$
- understand the EWSB/find New-Physics signals (ranging from Z' → leptons, to gluinos in SUSY decay chains, to finding the Higgs boson)
- constrain and model the New-Physics theories

in all the steps above (except probably  $Z' \rightarrow$  leptons) precise QCD predictions play a crucial role



Parton showering and hadronisation are modelled through shower Monte Carlos (HERWIG o PYTHIA)

## Many-particle final states

At the SLHC, large number of high-multiplicity events

SM and NP processes accompanied by multi-jet events, which are typical signatures of known or new heavy particles, and possibly decay chains



crucial to describe precisely high-multiplicity final states

Experience hints that a detailed knowledge of QCD is often necessary to understand collider events, and not to mis-interpret known physics as new physics

## B production: the 90's



discrepancy between Tevatron data and NLO prediction

#### B cross section in $p\bar{p}$ collisions at 1.96 TeV



FONLL = NLO + NLL

total x-sect is  $19.4 \pm 0.3(stat)^{+2.1}_{-1.9}(syst)$  nb

Cacciari, Frixione, Mangano, Nason, Ridolfi 2003

better understanding of hadronisation use of updated fragmentation functions (Cacciari & Nason)

good agreement with data

no New Physics

CDF hep-ex/0412071

#### High **p**<sub>T</sub> Jets at the Tevatron



Excess of data over theory reported by CDF (PRL77(1996)438) for  $p_T > 250$  GeV in the inclusive 1-jet rate. Highest momentum transfer probed so far, most sensitive to NP

Many speculations about NP

Mundane solution: better PDF's

## Better PDF's

At high x's, the gluon distribution is not constrained; with dedicated PDF's, which include the CDF inclusive 1-jet data, in case of compositeness, one should still find an excess in the centralrapidity region. Using D0 data, CTEQ showed there is no excess



Stump et al. (CTEQ) hep-ph/0303013

For better PDF's: need larger data samples & more accurate theory

# Solid SLHC phenomenology needs

## accurate perturbative results

NLO (multi-leg), NNLO

jet studies

## improved Monte Carlo generators

multi-jet, tree-level matrix elements interface with full NLO corrections (MC@NLO, POWHEG)

## soft, semi-hard physics

hadronisation in MC's

underlying and pile-up events (from 25 at LHC to ~300 at SLHC)

#### precise inputs

PDF's and fragmentation functions

 $\boldsymbol{\alpha}_{s}$ 

## Tremendous progress in QCD over last 5 years

Matrix-element Monte Carlo generators up to 8-9 final-state particles NLO matrix elements for W + 3 jets Ellis, Giele, Kunszt, Melnikov, Zanderighi 08

NNLO determination of  $\alpha_s$  from event shapes

PDF's with errors



# Physics issues at the **SLHC**

## Vector boson sector

triple and quartic gauge couplings testing quintuple gauge coupling vector boson scattering new vector bosons

Higgs sector

(self-)couplings rare decays dynamical symmetry breaking

#### Top physics rare decays by FCNC

- Compositeness
- SUSY
- Extra dimensions



## Anomalous triple gauge couplings

after  $U(I)_{EM}$ , C and P conservation, get an effective Lagrangian

$$\begin{split} \Delta \mathcal{L}_{GB} &= -ie \left[ \Delta g_1^Z (\overleftrightarrow{\partial} W_{\mu\nu}^* W^{\mu} Z^{\nu} - \overleftrightarrow{\partial} W_{\mu\nu} W^{*\mu} Z^{\nu}) \right. \\ &+ \Delta \kappa^Z W^{*\mu} W^{\nu} \overleftrightarrow{\partial} Z_{\mu\nu} \\ &+ \frac{\lambda^Z}{m_W^2} \overleftrightarrow{\partial} W_{\rho\mu}^* \overleftrightarrow{\partial} W_{\nu}^{\mu} \overleftrightarrow{\partial} Z^{\nu\rho} \right] & \text{ in (tree-level) SM} \\ &- ie \cot \theta_W \left[ \Delta \kappa^\gamma W^{*\mu} W^{\nu} \overleftrightarrow{\partial} \gamma_{\mu\nu} \right. \\ &+ \frac{\lambda^\gamma}{m_W^2} \overleftrightarrow{\partial} W_{\rho\mu}^* \overleftrightarrow{\partial} W_{\nu}^{\mu} \overleftrightarrow{\partial} \gamma^{\nu\rho} \right] \end{split}$$

 $\begin{array}{lll} \mbox{At SLHC} & W\gamma \rightarrow l\nu\gamma & \mbox{probes} & \Delta\kappa^\gamma, \lambda^\gamma \\ & WZ \rightarrow l\nu ll & \mbox{probes} & g_1^Z, \Delta\kappa^Z, \lambda^Z \end{array}$ 

 $\Delta \mathcal{L}_{GB}$  spoils the high-energy behaviour of the amplitudes, which violate unitarity cut it off by hand through  $c \to rac{c}{1+s/\Lambda}$ 

95% CL constraints ( $\Lambda = 10 \text{ TeV}$ )

One parameter varies, others fixed at SM values SM accuracy is at 10<sup>-3</sup> level

 $\rightarrow$  required experimental accuracy

95% CL constraints ( $\Lambda = 10 \text{ TeV}$ ) 2-parameter fits

> 14 TeV, 100 fb<sup>-1</sup>, 1000 fb<sup>-1</sup> 28 TeV, 100 fb<sup>-1</sup>, 1000 fb<sup>-1</sup>

| Coupling                 | 14 TeV               | 14 TeV                 |
|--------------------------|----------------------|------------------------|
|                          | $100 {\rm ~fb}^{-1}$ | $1000 \ {\rm fb}^{-1}$ |
| $\lambda_{\gamma}$       | 0.0014               | 0.0006                 |
| $\lambda_Z$              | 0.0028               | 0.0018                 |
| $\Delta \kappa_{\gamma}$ | 0.034                | 0.020                  |
| $\Delta \kappa_Z$        | 0.040                | 0.034                  |
| $g_1^Z$                  | 0.0038               | 0.0024                 |



## Anomalous quartic gauge couplings

global  $SU(2)_L \otimes SU(2)_R$  broken to SU(2)

effective chiral Lagrangian in terms of  $\Sigma(x) = \exp\left(i\frac{\phi^a(x)\tau^a}{v}\right)$ 

 $\phi^a(x)$  pseudo-Goldstone boson  $au^a$  Pauli matrix

 $\begin{aligned} \mathcal{L}_{4} &= \alpha_{4} \left[ \operatorname{Tr}(V^{\mu}V^{\nu}) \right]^{2} & V_{\mu} &= (D_{\mu}\Sigma)\Sigma^{\dagger} \\ \mathcal{L}_{5} &= \alpha_{5} \left[ \operatorname{Tr}(V_{\mu}V^{\mu}) \right]^{2} & T_{T}(TV^{\nu}) & T_{T}(TV^{\nu}) \\ \mathcal{L}_{6} &= \alpha_{6} \operatorname{Tr}(V_{\mu}V_{\nu}) \operatorname{Tr}(TV^{\mu}) \operatorname{Tr}(TV^{\nu}) & T &= \Sigma\tau^{3}\Sigma^{\dagger} \\ \mathcal{L}_{7} &= \alpha_{7} \operatorname{Tr}(V_{\mu}V^{\mu}) \left[ \operatorname{Tr}(TV^{\nu}) \right]^{2} & D_{\mu} = SU(2)_{L} \otimes U(1)_{Y} \\ \mathcal{L}_{10} &= \frac{\alpha_{10}}{2} \left[ \operatorname{Tr}(TV^{\mu}) \operatorname{Tr}(TV^{\nu}) \right]^{2} & \text{covariant derivative} \end{aligned}$ 

couplings probed by  $\begin{array}{c} pp \to qqVV \to VVjj\\ pp \to V^* \to VVV \end{array}$  with  $V=W^{\pm},Z$ 

|               | Indirect Limits                | LHC, 100 fb <sup>-1</sup>      | LHC, 6000 $fb^{-1}$            | LHC, 6000 fb <sup>-1</sup>     |
|---------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Coupling      | $(1\sigma)$                    | $(1\sigma)$                    | $(1\sigma)$                    | 95% C.L.                       |
|               | $(\times 10^{-3})$             | $(\times 10^{-3})$             | $(\times 10^{-3})$             | $(\times 10^{-3})$             |
| $\alpha_4$    | $-120. \le \alpha_4 \le 11.$   | $-1.1 \le \alpha_4 \le 11.$    | $-0.67 \le \alpha_4 \le 0.74$  | $-0.92 \le \alpha_4 \le 1.1$   |
| $\alpha_5$    | $-300. \le \alpha_5 \le 28.$   | $-2.2 \le \alpha_5 \le 7.7$    | $-1.2 \le \alpha_5 \le 1.2$    | $-1.7 \leq \alpha_5 \leq 1.7$  |
| $\alpha_6$    | $-20. \leq \alpha_6 \leq 1.8$  | $-9.6 \le \alpha_6 \le 9.1$    | $-3.5 \le \alpha_6 \le 3.2$    | $-4.3 \le \alpha_6 \le 3.9$    |
| $\alpha_7$    | $-19. \leq \alpha_7 \leq 1.8$  | $-10. \le \alpha_7 \le 7.4$    | $-4.4 \le \alpha_7 \le 2.2$    | $-5.4 \le \alpha_7 \le 2.8$    |
| $\alpha_{10}$ | $-21. \le \alpha_{10} \le 1.9$ | $-24. \le \alpha_{10} \le 24.$ | $-4.1 \le \alpha_{10} \le 4.1$ | $-4.8 \le \alpha_{10} \le 4.8$ |

# Quintuple gauge couplings

can be tested in triple boson production from vector-boson fusion



$$ZW^{\pm} \to W^+W^-W^{\pm} \to 3l$$

870 leptonic events for  $m_H = 120$  GeV and 6000 fb<sup>-1</sup>

## ElectroWeak Symmetry Breaking

- a SM Higgs with 115 <  $m_H$  < 200 GeV should be found with 10-15 fb<sup>-1</sup>
- If a SM Higgs is found with 200 GeV < m<sub>H</sub> < I TeV (not much luminosity needed there), then need more luminosity to find the New Physics that explains the EW precision fits
- If m<sub>H</sub> > I TeV, then we face a scenario with a composite Higgs, vector-boson resonances New Physics

anything beyond measuring a Higgs resonance, like studying the Higgs properties, couplings and quantum numbers might require SLHC luminosities

## Higgs couplings

The properties of the Higgs-like resonance are its

- couplings: gauge, Yukawa, self-couplings
- quantum numbers: charge, colour, spin, CP

Dührssen et al.'s analysis for gauge and Yukawa couplings hep-ph/0406323

use narrow-width approx for  $\Gamma$  (fine for  $m_H < 200 \text{ GeV}$ )

production rate with H decaying to final state xx is

 $\sigma(H) \times BR(H \to xx) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \frac{\Gamma_p \Gamma_x}{\Gamma}$ branching ratio for the decay is  $BR(H \to xx) = \frac{\Gamma_x}{\Gamma}$ 

observed rate determines  $\frac{\Gamma_p \Gamma_x}{\Gamma}$ 



VBF and gluon-fusion rates yield measurements

obtain upper bound on  $\Gamma$ 

#### Model-independent analysis based on the ratio of rates



the improvement of SLHC over LHC is never better than a factor 2

## Higgs self-couplings

Measurement of HHH coupling possible through HH production dominant production mode is gluon fusion



large cancellation between the 2 diagrams makes the rate rather small in addition, huge QCD backgrounds



best chance to measure  $\lambda_{HHH}$  is

$$gg \to HH \to W^+W^-W^+W^- \checkmark l^{\pm}l^{\pm} + 4j$$
$$l^{\pm}l^{\pm}l^{\pm} + 2j$$

main systematic uncertainties are

- limited knowledge of top Yukawa coupling, which drives production rate
- BR to W<sup>+</sup> W<sup>-</sup>, which drives decay fraction

must be known very precisely for a measurement to be useful



## Rare Higgs decays

 $H \to Z\gamma \to ll\gamma$ 

At LHC, with 600 fb<sup>-1</sup> At SLHC, with 6000 fb<sup>-1</sup>

$$S/\sqrt{B} = 3.5\sigma$$
$$S/\sqrt{B} = 11\sigma$$

 $H \to \mu^+ \mu^-$ 

| $m_H$ (GeV) | $S/\sqrt{B}$ | $\frac{\delta\sigma \times \mathrm{BR}(H \to \mu\mu)}{\sigma \times \mathrm{BR}}$ |
|-------------|--------------|-----------------------------------------------------------------------------------|
| 120 GeV     | 7.9          | 0.13                                                                              |
| 130 GeV     | 7.1          | 0.14                                                                              |
| 140 GeV     | 5.1          | 0.20                                                                              |
| 150 GeV     | 2.8          | 0.36                                                                              |

## Composite Higgs

- For  $E >> m_W$ , the longitudinally polarised vector bosons are the Goldstone bosons of the EWSB. Thus,  $V_L V_L \rightarrow V_L V_L$  probes the EWSB
- $\mathcal{L}_{SB}$  must produce observable effects at  $\sqrt{s_{VV}} = \Lambda_{SB} \leq 1.7~{
  m TeV}$
- the scale  $\Lambda_{SB}$  and the coupling strength  $\lambda_{SB}$  are correlated; thus, if the Higgs is heavy it is also strongly interacting, and the strong vector-boson scattering can be analysed through chiral Lagrangians
  - Example:  $\sigma$ -model effective Lagrangian  $\mathcal{L} = \frac{c_H}{2f^2} \partial_\mu (H^{\dagger}H) \partial^\mu (H^{\dagger}H) + \cdots$  $\sigma$ -model scale f is like the pion decay constant in low-energy QCD Giudice, Grojean, Pomarol, Rattazzi '07



## Strong vector-boson scattering

 $W_L Z_L \to 3l$ 







#### Heavy Higgs in MSSM

SLHC improves LHC reach by 50-200 GeV



## Top physics

FCNC-induced branching fractions are  $O(10^{-5} - 10^{-6})$ not large enough to be found at the LHC

b-tagging performance is crucial

| t  ightarrow | q | $\gamma$ |  |
|--------------|---|----------|--|
|--------------|---|----------|--|

at same b-tagging, SLHC better than LHC by factor 3 Best BR =  $0.14 \cdot 10^{-5}$ 



#### $t \rightarrow q q$

| 600 fb <sup>-1</sup>   | 22.3 | 60.8 | 210. |
|------------------------|------|------|------|
| $6000 \text{ fb}^{-1}$ | 7.04 | 19.2 | 66.2 |
|                        |      |      |      |
| <br>-                  |      |      |      |

b-tagging

at same b-tagging, SLHC better than LHC by factor 3 Best BR =  $7.04 \cdot 10^{-5}$ 

| b-tagging              | ideal | real. | $\mu$ -tag |
|------------------------|-------|-------|------------|
| $600 \text{ fb}^{-1}$  | 0.46  | 1.1   | 83.3       |
| $6000 \text{ fb}^{-1}$ | 0.05  | 0.11  | 8.3        |

#### $t \to q Z$

at same b-tagging, SLHC better than LHC by factor 10 Best BR =  $0.05 \cdot 10^{-5}$ 

| b-tagging              | ideal | real. | $\mu$ -tag |
|------------------------|-------|-------|------------|
| $600 \text{ fb}^{-1}$  | 0.48  | 0.88  | 3.76       |
| $6000 \text{ fb}^{-1}$ | 0.14  | 0.26  | 0.97       |

ideal

99.2

real.

60 0

 $\mu$ -tag

# Conclusions

- Given our total ignorance about NP, physics case is straightforward, but not overwhelming. The overall picture should improve dramatically after the first couple years of LHC results
- R&D, rather than physics, should be the present priority. After the first couple years of LHC results (2011-12), the SLHC outlook could be re-assessed in a less speculative way, in particular for the very many NP models
  - By 2012, we should also have much better QCD precision tools, to analyse signals and BG's
- we always assumed that the SLHC detector performance is not worse than the LHC detector performance

Parton shower MonteCarlo generators

HERWIG B.Webber et al. 1992

being re-written as a C++ code (HERWIG++)

PYTHIA T. Sjostrand 1994

## Interfaces

- CKKW S. Catani F. Krauss R. Kuhn B. Webber 2001
  - MLM L. Lonnblad 2002 M.L. Mangano 2005

procedures to interface parton subprocesses with a different number of final states to parton-shower MC's

MC@NLO S. Frixione B. Webber 2002
 POWHEG P. Nason 2004
 procedures to interface NLO computations to parton-shower MC's

## Matrix-element MonteCarlo generators

- multi-parton LO generation: processes with many jets (or V/H bosons)
  - ALPGEN M.L.Mangano M. Moretti F. Piccinini R. Pittau A. Polosa 2002
  - MADGRAPH/MADEVENT W.F. Long F. Maltoni T. Stelzer 1994/2003
  - COMPHEP A. Pukhov et al. 1999
  - GRACE/GR@PPA T. Ishikawa et al. K. Sato et al. 1992/2001
  - HELAC C. Papadopoulos et al. 2000
- processes with 6 final-state fermions
  - PHASE E. Accomando A. Ballestrero E. Maina 2004
- merged with parton showers
  - all of the above, merged with HERWIG or PYTHIA
  - SHERPA F. Krauss et al. 2003