ER

otember 200

W. Scandale, F. Zimmermann

We acknowledge/the support of the European Community-Res Infrastructure Activity under the FP6 "Structuring the European programme (CARE, contract number RII3-CT-2003-506395)

MAR

W. Scandale & F. Zimmermann

CARE

outline

 motivation & staged approach ✓ 3 upgrade scenarios ✓ luminosity levelling ✓ injector upgrade & schedule ✓ detector upgrade \checkmark crab cavities ✓ beam-beam & e-cloud mitigation complementary advanced schemes ✓ strategy for "phase-2"

Three Strong Reasons for LHC Upgrade

 after few years, statistical error hardly decreases
 radiation damage limit of IR quadrupoles (~700 fb⁻¹) reached by ~2016⇒ time for an upgrade!
 extending physics potential!

staged approach to LHC upgrade "phase-1" 2013:

new triplets, D1, TAS, $\beta^*=0.25$ m in IP1 & 5, reliable LHC operation at ~2-3x luminosity; beam from new Linac4

"phase-2" 2017: + injector target luminosity 10x nominal, upgrade possibly Nb₃Sn triplet & $\beta^* \sim 0.15$ m complementary measures 2010-2017: e.g. long-range beam-beam compensation, crab cavities, new/upgraded injectors, advanced collimators, coherent e- cooling??, e- lenses?? phase-2 might be just phase-1 plus complementary measures longer term (2020?): energy upgrade, LHeC,...

LHC upgrade paths for IP1 & IP5

ultimate beam $(1.7 \times 10^{11} \text{ protons/bunch}, 25 \text{ spacing}), \beta^* \sim 10 \text{ cm}$ early-separation dipoles in side detectors, crab cavities \rightarrow hardware inside ATLAS & CMS detectors,

first hadron crab cavities; off- δ β -beat

- ultimate LHC beam (1.7x10¹¹ protons/bunch, 25 spacing)
- β* ~10 cm
- crab cavities with 60% higher voltage
 - \rightarrow first hadron crab cavities, off- δ β -beat

large Piwinski angle (LPA)

F. Ruggiero, W. Scandale. F. Zimmermann

larger-aperture triplet magnets

- 50 ns spacing, longer & more intense bunches (5x10¹¹ protons/bunch)
- $\beta^* \sim 25$ cm, no elements inside detectors
- long-range beam-beam wire compensation
 - \rightarrow novel operating regime for hadron colliders, and for beam generation

parameter	symbol	nominal	ultimate	Early Sep.	Full Crab Xing	L. Piw Angle
transverse emittance	ε [μm]	3.75	3.75	3.75	3.75	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25	25	25	50
beam current	I [A]	0.58	0.86	0.86	0.86	1.22
longitudinal profile		Gauss	Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55	7.55	7.55	17.8
beta* at IP1&5	β* [m]	0.55	0.5	0.08	0.08	025
full crossing angle	θ _c [µrad]	285	315	S.	0	81
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75		V O	2.0
hourglass reduction		1.0	1.0	0,86	. 0.86	0.99
peak luminosity	$L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	1	2.3	10 5.5	15.5	10.7
peak events per #ing		19	44	294	294	403
initial lumi lifetime	$\tau_{L}[h]$	22	14	2.2	2.2	4.5
effective luminosity $(T_{1}, -10)$	$L_{eff}[10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}]$	0.46	0.91	2.4	2.4	2.5
(1 _{turnaround} -10 II)	T _{run,opt} [h]	21.2	17.0	6.6	6.6	9.5
effective luminosity	$L_{eff}[10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}]$	0.56	1.15	3.6	3.6	3.5
(1 _{turnaround} -3 II)	T _{run,opt} [h]	15.0	12.0	4.6	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	1.04 (0.59)	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.25	0.25	0.36
image current heat	P_{IC} [W/m]	0.15	0.33	0.33	0.33	0.78
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	0.06 (0.56)	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ_{l} [cm]	4.5	4.3	3.7	3.7	5.3
comment		nominal	ultimate	D0 + crab	crab	wire comp.

Name Event Date

how can we achieve this?

ES or FCC: dynamic β squeeze, or dynamic θ change (either IP angle bumps or <u>varying crab voltage</u>) **LPA:** dynamic β squeeze, or dynamic change of bunch length

upgrade bunch structures

experimenters' choice (LHCC July 2008)

no accelerator components inside detector
 lowest possible event pile up
 possibility of easy luminosity levelling

HHH, CARE Meeting, CERN, 17.09. 2008

→ full crab crossing upgrade

W. Scandale & F. Zimmermann

CERN

tentati	ve schedule f	or			-2	h)_	C	8	V		v/	I -
AL F	otupo P- fina	t la					4						
	utype & ms		e	a			J	E	SI	S			
0 1 1 1		• • • •											///
Schedule	L'Linnecar, HHH Crab-Cav	ity Va	alic	lat	10	n V	/01	'KS	hop) Al	ıgu	st	
							_		_				
			2008		2	009		201	.0	201	11	20)12
	Cavity					TT		Π			Т		
	Vertical test												
	HOM couplers												
R & D and test stand work	LOM coupler												
	Main coupler												
	Tuner												
	Cryostat												\square
Confirmation main parameters													
	Cryostat plus cavity												\square
	Personnel / Hardware safety												
	Tunnel layout, cryogenics interface												
Full Prototype Design for	Survey / Alignment												
Full Prototype Design for	Radiation Issues						10						
Instanation	Cavity servo-control control												
	Synchronisation control												
	Slow controls												
	RF power source						ĺ						
Paperwork for review													
Design validation review													
	Construction cryomodules												
	Full bunker tests												
	Construction power source												
Construction & Installation	Construction electronics												
construction & installation	System tests												
	Tunnel mods.												
	Installation												
	Beam tests												

local crab cavities together with IR phase-2 ~2017 ?

LHC injector upgrade

Reasons:

- need for reliability:
 - accelerators are old
 [Linac2: 1978, PSB: 1975, PS: 1959, SPS: 1976]
 - they operate far from their design parameters and close to hardware limits
 - the infrastructure has suffered from the concentration of resources on LHC during the past 10 years
 - need for better beam characteristics

Roland Garoby, LHCC 1July '08

present and future injectors

Roland Garoby, LHCC 1July '08

layout of the new injectors

long-range beam-beam compensation

 $v = 0.008e^{0.5275x}$

 $R^2 = 0.96956$

y = 0.0321e^{0.263}

 $R^2 = 0.91649$

distance [mm]

25

20

en!

30

electron lens

use of e-lens as tune-spread compressor improves simulated LHC beam lifetime (phase to IP important)

A.Valishev, CARE-HHH mini-workshop on beam-beam Compensation, 28 August 2008

"crab-waist" collisions at DAFNE (note: no crab cavities but sextupoles!)

can we make use of crab waists at the LHC?

crab waist in LHC?

one example:

K. Ohmi CARE-HHH mini-workshop 28 August '08

 ϕ =3.5 in LPA option β_v squeezed to σ_x/ϕ =2.1cm (*extreme!*)

 \rightarrow L increases (14/2.1)^{1/2}=2.6 times $\rightarrow \xi_v$ decreases and ξ_x is small for LPA

→ "crab waist has a chance to work!"

Name Event Date

CARE

e-cloud mitigation

Evaporation of metals in relatively high pressure of a rare gas produces very rough and porous films. Already mentioned in the literature, "gold black" has been produced and characterized.

EARE

crystal collimation

W. Scandale et al

experiments in SPS North area since 2006

2008 result: crystal deflection of 450 GeV protons with an array of five aligned crystals parallel simulation effort

approved experiment in SPS ring proper

Iower beam emittance

- can compensate for luminosity loss due to large crossing angle [R. Garoby]
- may be provided by new injectors
- and/or by "coherent e- cooling" [V. Litvinenko]

damping times in hours:

Collider	Species	Energy, GeV/n	Synchrotron radiation	Electron cooling	Coherent electron cooling
RHIC	Au ions	100	$\sim 210^{4}$	~1	0.015
RHIC	proton	2,750	$\sim 410^4$	> 30	0.3
LHC	Pb ions	450	10	$>410^4$	0.15
LHC	protons	7,000	13	8	~ 1

promise of 1-hr damping time at 7 TeV! CeC proof-ofprinciple experiment at RHIC in 2012

strategy for "phase 2" ✓ pursue vigorous R&D program for larger-aperture higher-field magnets parallel crab-cavity development and testing ✓ design, production & installation of wire compensator already in phase-0 exploration of complementary schemes, like crab waist, coherent e-cooling, e-lenses, crystal collimation; integrate them into upgrade plan when they become available establish generation method long flat bunches ✓ identify main limitations of the real LHC ✓ LHC machine studies to explore upgrade scenarios, e.g. large Piwinski angle close coordination with detector upgrades