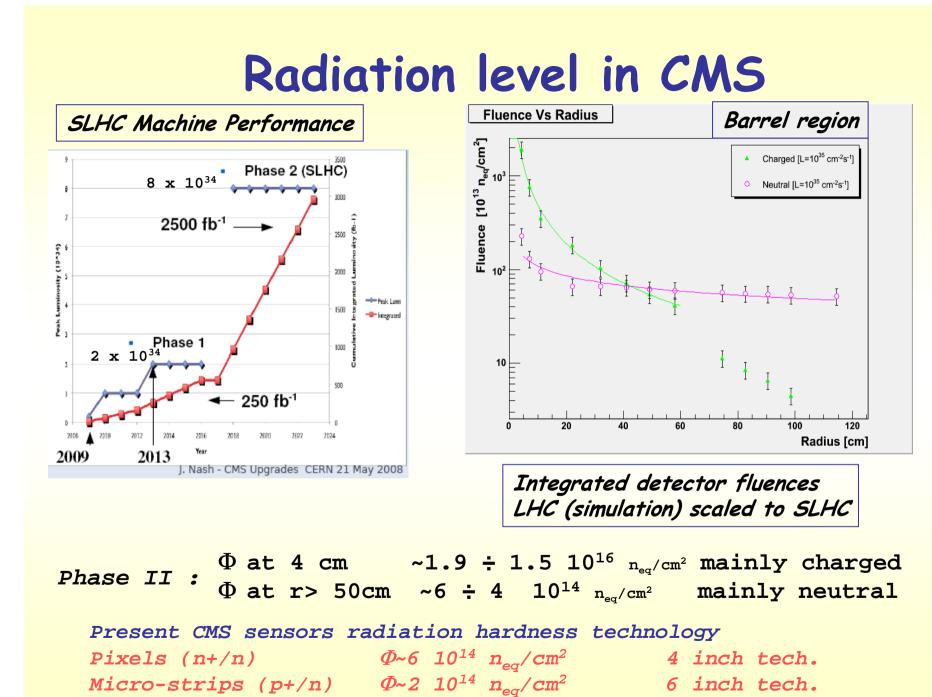
CMS Tracker sensors Upgrade

•R&D proposals Summary

CMS-Tracker Italia


A.Messineo

A.Messineo

SLHC experimental issues

- Tracker systems at SLHC will experience:
 - Heavy Radiation damage
 - High Local occupancy
 - Harsh experimental condition
- More powerful and new performance required, as triggering at L1

Dedicated R&D to design new tracking systems

13-14 November 2008 Sestri Levante,

A.Messineo

Incontro ATLAS e CMS per l'Upgrade a SLHC

Sensor issues & challenges

• Challenges/issues

- Radiation hardness
- High Devices Occupancy
- Power consumption
- Sensors Operational conditions (Bias, T,...)
- Detector module integration
- New tracker layout
- Cost

-

- Today promising "list of options" for sensors optimization at SLHC:
 - Collect electrons
 - Use [0] enriched silicon
 - Active thickness
 - Device engineering:
 - small pixel, Macro Pixel, stri-xel, micro strips
 - Design and Integration
-new ideas/solutions needed to equip innermost layer (3D,SOI,MAPS,3D vertical integration.....)

Multi-project approach for SLHC tracker sensors/detector/system optimization

R&D proposal n.1

R&D for Thin Single-Sided Sensors with HPK

Institutions : (submitted: January 28, 2008) CERN, UCSB, Purdue, FNAL, Perugia, Bari, Pisa, Karlsruhe, Vienna, PSI

Led by M. Mannelli

Present status : Approved by CMS

R&D proposal n.2

Development of pixel and micro-strip sensors on radiation tolerant substrates for the tracker upgrade at SLHC (submitted: April 9, 2008)

Institutions:

Bari, Catania, Firenze, Padova, Perugia, Pisa, Torino, PSI, FNAL, Purdue

Led by M. de Palma

Present status : Approved by CMS

Proposals are now official CMS upgrade projects

http://cmsdoc.cern.ch/cms/electronics/html/elec_web/docs/slhcusg/proposals/proposal_list.htm

13-14 November 2008 Sestri Levante,

A.Messineo

Incontro ATLAS e CMS per l'Upgrade a SLHC

R&D collaborations:

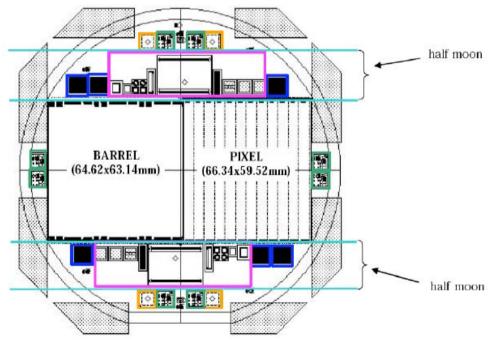
- Large collaboration for each R&D proposal
 - Planned and supported by:
 - INFN groups and non Italian Institution
 - Size of the team: ~23 FTE

- Teams involved have experience in
 - CMS pixels and micro-strips design
 - Specific experiment for radiation hardness
 - SMART (INFN-G5)
 - RD50 (CERN)

R&D n. 1 : Abstract

- The goals of this R&D are to determine the characteristics of thin (<300um) Single-Sided Silicon Sensors, and establish production techniques and capabilities suitable for high quality, large scale and low cost production of such sensors, for the CMS SLHC Tracker Upgrade.
- Both p-on-n and n-on-p sensors will be investigated, as will be different substrate types (FZ, MCZ and Epitaxial).
- The CMS SLHC Tracker will likely see large scale deployment of short strips (~2cm), and/or long pixels (~2mm).
- This R&D program will be carried with Hamamatsu Photonics, and continues to build on this successful Industrial Partnership in preparation for the SLHC.

Wafer Layout

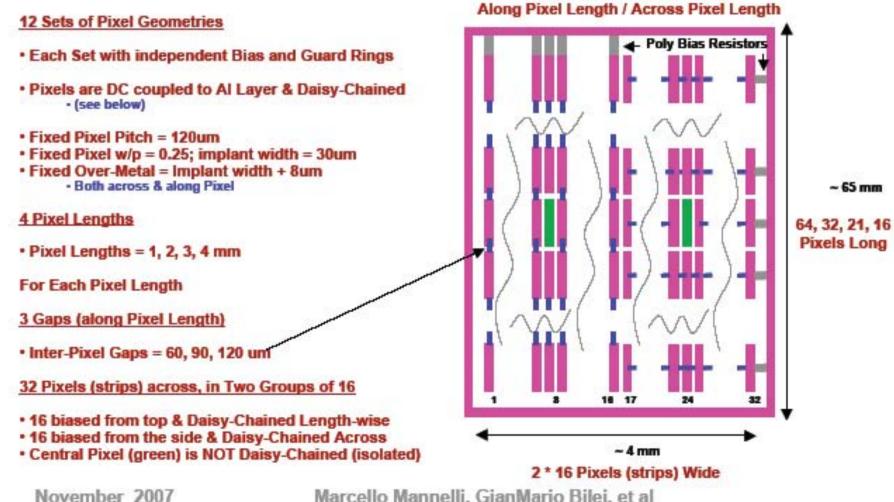

The masks include a set of

- Multi-Geometry Strip sensors,
 - benchmark for substrate thickness less than or equal to the strip pitch.
- Multi-Geometry Long Pixels with the pixel length as an additional parameter

• The studies will include

- Strip Capacitance: to backplane, inter-strip, and total
- Critical fields, depletion and break-down voltage
- Charge collection
- Range of: strip pitch, w/p, and metal overhang and substrate thickness

6 inch wafer


A.Messineo

Proposed Multi-Geometry Pixels

Inter-Pixel Daisy-Chaining

Marcello Mannelli, GianMario Bilei, et al Program of work for Thin Single Sided Sensors

Production plan

[NLE7	D 57	D C 7	n M07	D MOZ	D MOZ	Mani	Dani	Dani
		N-FZ	P-FZ	P-FZ	n-MCZ	P-MCZ	P-MCZ	N-epi	P-epi	P-epi
			pspray	pstop		pspray	pstop		pspray	pstop
200 um thick by thinning	QTY	9	6	6	9	6	6	0	0	0
100 um thick on carrier substrate	QTY	9	6	6						
100 um thick epitaxial	QTY							9	6	6
50 um thick epitaxial	QTY							9	6	6
200 um thick on carrier substrate & double metal	QTY	6		6						

Processing of:

•1 Layout

•117 wafers in total

```
•Total cost ~560K CHF
```

- This R&D should come to a full set of results in about one year.
 - Sensor fabrication will take about 6 months.
 - Sensor characterization and functionality tests, including irradiation will take another approximately 6 to 9 months.
 - Test-beam measurements of charge collection efficiency, making use of the common infrastructure currently being set up, will complete the program.
- Negotiation and technical discussion with HPK already in an advanced stage, project is about to take off

13-14 November 2008 Sestri Levante,

R&D n.2 : Abstract

- The present project addresses the R&D activity to improve and optimize the production technology of radiation tolerant silicon sensors to stand the fluences foreseen for the new CMS tracker at SLHC.
- The goal is to reduce substantially the lot of options now available (process type, doping type, substrate thickness) in order to build radiation-hard sensors capable of measuring the impact position of the particle with high precision.
- Sensors will be designed and produced with planar technology:

- micro-strip, pixel and macro pixel sensors,

- Synergies with industrial partners:
 - a first approach to the industrial preproduction of Silicon Detectors optimized for the tracker at SLHC.
- Activity tuned to plan and study the most promising solutions for Phase I/II.

13-14 November 2008 Sestri Levante,

A.Messineo

Goals

We expect to clarify technological aspects:

- the use of the 6 inch technology with single side process for both electron and hole collecting devices, (p-type & n-type bulk);
- the production of devices with material not commonly used such as Magnetic Czochralski or Epitaxial silicon;
- standardization of sensor process in order to make the large scale production affordable;
- the features of the process and design rules for producing radiation resistant devices capable of stable operation at high bias voltages;
- the influence of the thickness of the wafer to decrease power dissipation after radiation damage;
- the limits on sensor design (size and geometry of the active area) given by current technology;
- the methods of interconnection between sensors and sensors to electronics (wire/bump);
- the technique for prototyping of tracker detectors.
- The proposed R&D plans to optimize device geometry to fulfill the following requirements:
 - low occupancy levels,
 - high coordinate measurement resolution,
 - trigger track primitive generation, to be applied for the "cluster width trigger" (see F.Palla talk) technique

13-14 November 2008 Sestri Levante,

R&D plan

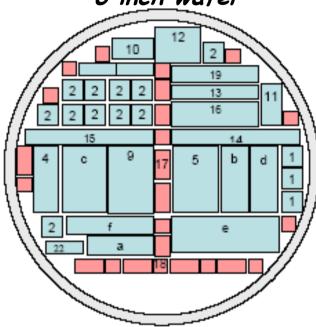
- The project foresees a set of scheduled submissions of improved wafer layouts
- A tentative and preliminary priority list for the layout submissions

Submission 1 :

Design of single chip prototypes on different materials

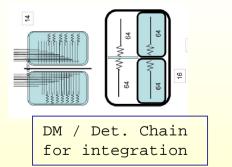
Thickness al	Fz-p	Fz-n	MCz-p	MCz-n	Epi-p	Epi-n
300 um	н	н	н	н	_	_
200 um	L	-	н	н		-
100 um	L	-	L	-	L	L

Goals:


Optimal devices designs ; Best radiation tolerant material ; Production of mini batches

Example p-type processing	P-FZ	P-MCZ	P-epi
320um thick with DML (wf qty)	5	5	-
200 um thick without DML (wf qty)	5	5	-
100 um thick epi with DML (wf qty)	-	-	5

Quotation from HPK: Mask, development and production 1 Layout 25 wafers 3 material `flavours' TOTAL COST ~142K €


Incontro ATLAS e CMS per l'Upgrade a SLHC

1st Submission: preliminary layout

	CMS design	benchmark			
Pixels	CMS design	Pixel C measurement			
	CMS modified W and inter P	performance of new geometries			
	-	-			
Macro Pixels	pitches: 50, 100 um	long pixel regime (a few mm long)			
	- -	-			
	pitches : 30 , 60 , 100, 120 um	cluster width trigger study			
Microstrips	AC / DC strips coupling				
	short strips : pitch 120 um	short strips regime (a few mm long)			
Microstrips	pitch 80 um	interconnection schemes test			
	CMS design	Process study & Producer comparisor			
Test structures	Devices Capacitance study	Pixels C , strips C			
	Diodes	Radiation tests			

Devices with geometry suitable to equip SLHC-tracker layers at different radii Pixels : inner region Strips : outer region

Length =5 X PX + 2	Length =5 X Px +					
mm Height = 7 X	2 mm Height = 5					
Py + 2mm	X Py + 2mm					
Capacitance						

Device design compatible with present F.E. electronics available in CMS (PSI42, pixels, and APV25, strips)

13-14 November 2008 Sestri Levante,

A.Messineo

Incontro ATLAS e CMS per l'Upgrade a SLHC

R&D plan: 2nd and 3rd Submissions

Submission 2 :

- Scale to devices with real size
- The new masks will include:
 - few "real size" detector both pixel (inner tracker region)
 and micro-strip (outer tracker region)
 - optimized and better proved interconnection of devices
- These devices will be produce on the
 - First promising substrate
 - Second promising substrate

Submission 3 :

- Full batch and pre-production
- Two new sets of masks: one Pixel, one micro-strip will be designed. Production of detector will be done on the "best" material
 - real size "final" pixel detector
 - real size "final" micro-strip detector

Activity matrix

- Activity 1: Framework definition for sensors upgrade.
- Activity 2: Sensor design and wafer layout.
- Activity 3: Wafer processing.
- Activity 4: Device and production qualification.
- Activity 5: Device irradiation
- Activity 6: Sensor-ROC interconnection
- Activity 7: Beam tests
- Activity 8: Module assembly

Table 1 : Activity Matrix

10010111110000		-						
Institution	Act. 1	Act. 2	Act. 3	Act. 4	Act. 5	Act. 6	Act. 7	Act. 8
INFN-Bari	Х	Х	Х	Х	Х		Х	
INFN-Catania	Х			Х	Х		Х	
INFN-Firenze	Х	Х		Х	Х		Х	Х
INFN-Padova				Х	Х		Х	
INFN-Perugia	Х	Х	Х	Х	Х		Х	Х
INFN-Pisa	Х	Х	Х	Х	Х	Х	Х	Х
INFN-Torino				Х	Х		Х	Х
PSI	Х	Х		Х	Х	Х		
FNAL	Х	Х		Х	Х	Х	Х	Х
Purdue University	Х	Х		Х		Х	Х	

13-14 November 2008 Sestri Levante,

- The present R&D project foresees duration of 36 months, to cover the full R&D activities up to preproduction.
 - A year-based time schedule of milestones is foreseen to verify the achievements in coordination with the CMS-WG on SLHC activities, and eventually to readdress specific activities/goals.
 - Activities of the project are also tuned and scheduled to address specific R&D for Phase I and Phase II tracker upgrade.
- Preliminary discussion with producers already started.

Milestone list:

- 1) milestone 1 : approval of mask set for submissions
- 2) milestone 2 : sensors productions (Submission I, II and III)
- 3) milestone 3 : test beam (2009 , 2010, 2011)

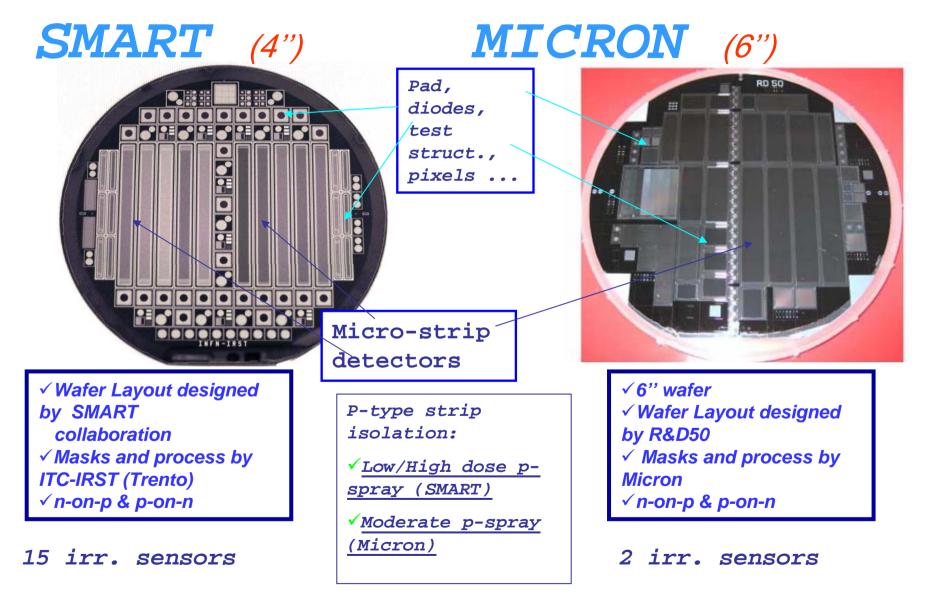
13-14 November 2008 Sestri Levante,

A.Messineo

Financial plan for INFN

- 2 R&Ds with different time schedule
- Some room to further optimize Layout, production plan and costs.
- R&D n.1 : total cost 380K€ (almost already all collected)
 - Maybe in a time scale of 3 years a new processing iteration will be needed, no cost estimation today
- R&D n.2
 - First year estimation:200K€

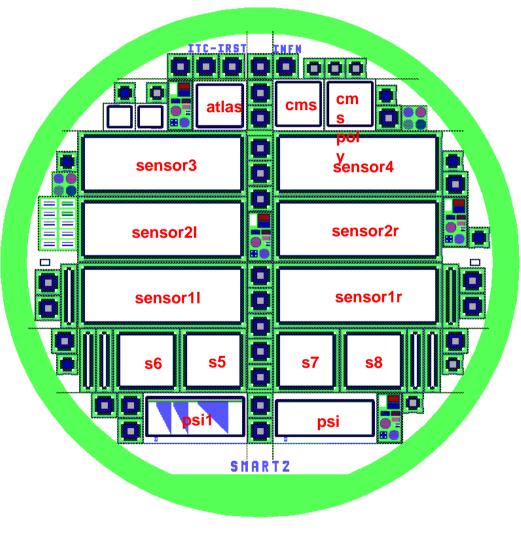
ITEM	Attività	Costo (K€)
Sensori MCz/Fz/Epi	Contr. per Maschere	160
(25-bulk p-type & 10-n-	e produzione batch	
type)	Consumi	30
	caratterizzazione	
	Consumi	10
	irraggiamento	
totale		200


- Second year: ~400K€
 - 1 mask set (hopefully), 2 processed materials, internal splitting
- Third year : ~400K€
 - 2 mask sets, 1 processed material (hopefully), internal splitting

Summary

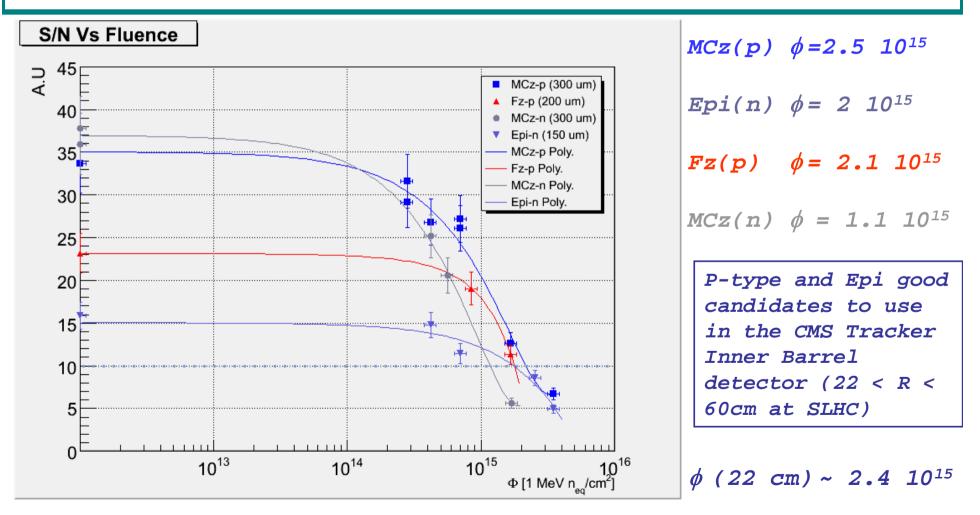
- CMS-INFN tracker Italian community involved in two R&Ds:
 - Approved by CMS (committee/referees): considered as promising for the CMS tracker upgrade, and recognized as CMS upgrade projects
 - International collaboration for each R&D
 - Cover wide range of options for silicon devices upgrade, for both inner (pixels) and outer (strips) tracker region
 - Supported teams with experience in the field of radiation hardness research
 - Overlap with other R&D (cluster width trigger)
- Ready to start the planned activity inside CMS:
 - We should support, in CMS, our contribution to "the Ideas" of the R&Ds with clear answers about:
 - Projects fit within INFN plans ?
 - T₀, starting time : when? Will fit the CMS needs & timescale for Phase I & II?
 - Resources: can we afford the plan?

extra

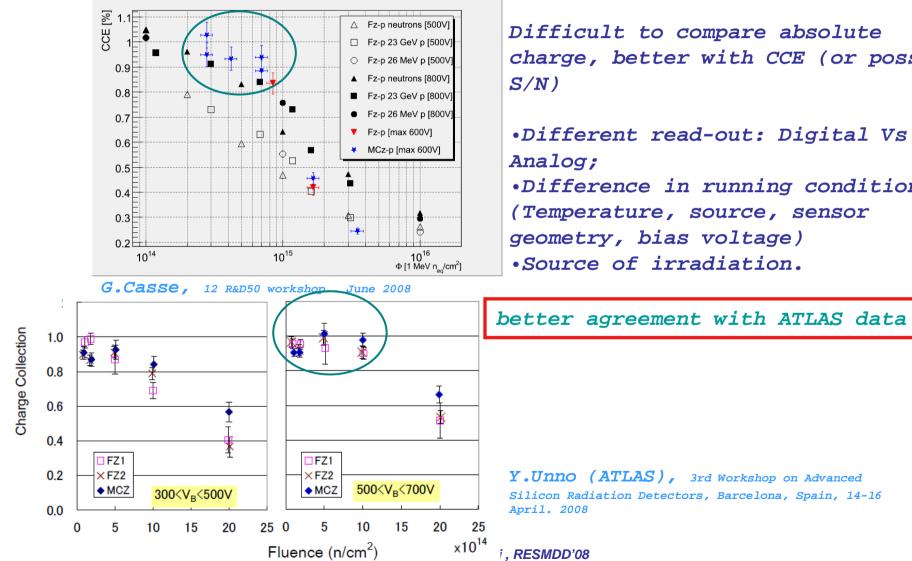

Wafers layout:

Firenze, 16 Ottobre 2008

F.Fiori, RESMDD'08


WAFER layout "SMART2"

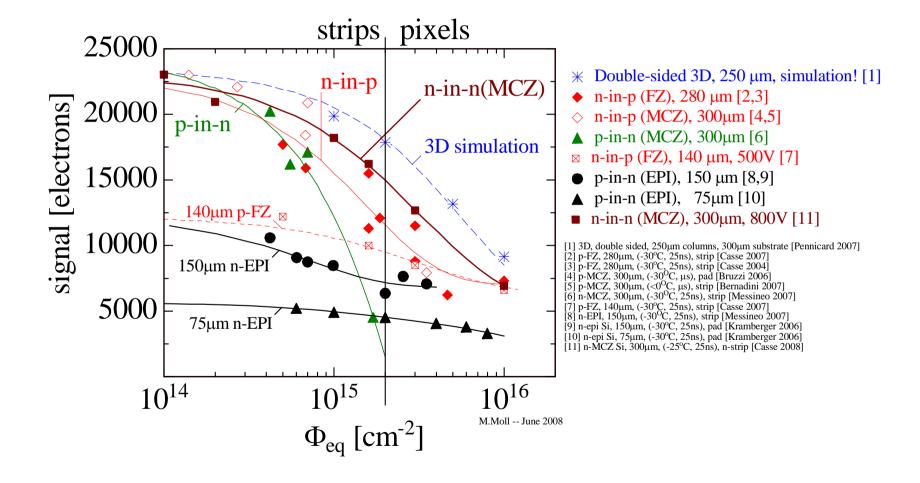
F.Fiori, RESMDD'08


Summary: S/N for irradiated detectors

Detector operation limit S/N >= 10 (safe value)

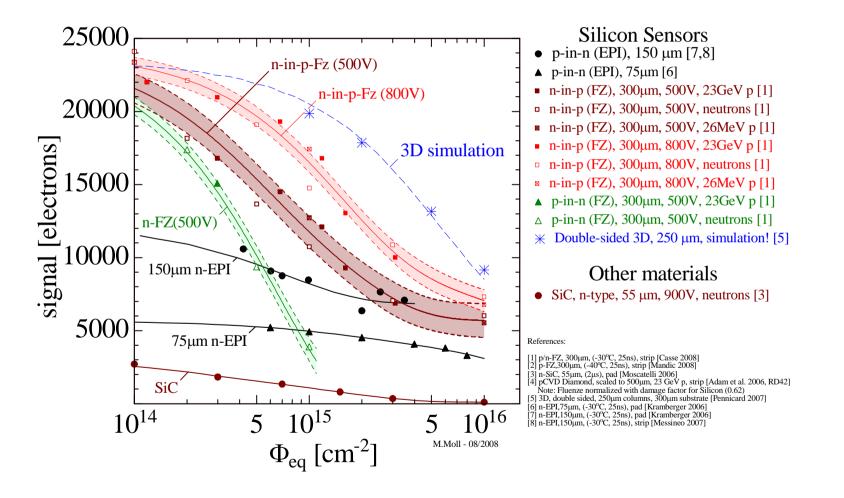
Comparison to Casse

measurements:


Difficult to compare absolute charge, better with CCE (or possibly

•Different read-out: Digital Vs •Difference in running conditions (Temperature, source, sensor

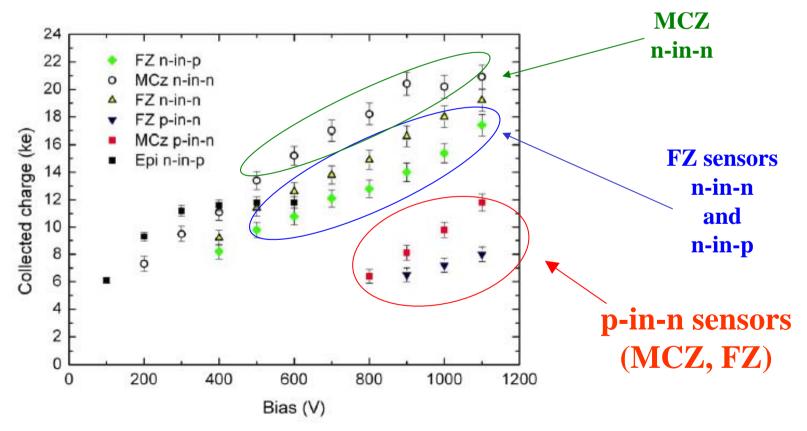
• Signal comparison for various Silicon sensors


<u>Note</u>: Measured partly under different conditions! Lines to guide the eye (no model/no fit)!

Silicon materials for Tracking Sensors

• Signal comparison for various Silicon sensors

Note: Measured partly under different conditions! Lines to guide the eye (no modeling)!



Strip detectors – MCZ silicon

• Gianluigi Casse (Liverpool) [RD50 Workshop – June 2008]: "Charge Collection Measurements on MICRON RD50 sensors"

Neutron irradiations: medium doses (1x10¹⁵ n cm⁻²)

Michael Moll – 1st LHeC Workhsop, Divonne, 1-3 September 2008 -27-