Exploring the Z=32 triaxiality corridor towards N=50 via safe Coulomb excitation at SPES

<u>M. Zielińska¹</u>, <u>D. Verney²</u>, F. Azaiez², D. Bonatsos³, M.-C. Delattre², D. Doherty^{1,4}, A. Drouart¹, S. Franchoo², F. Ibrahim², A. Gottardo²,
L. Grente¹, M. Komorowska⁵, T. Konstantinopoulos⁶, D. Mengoni^{7,8}, R. Li², I. Matea², B. Melon⁹, D. Mengoni^{7,8}, P. Morfouace², A. Nannini⁹,
P.J. Napiorkowski⁵, A. Perego⁹, M. Rocchini⁹, M.-D. Salsac¹, I. Stefan², D. Suzuki², K. Wrzosek-Lipska⁵, J.J. Valiente-Dobón⁸, D.T. Yordanov²,

¹ CEA Saclay, France; ² IPN Orsay, France; ³ Demokritos National Research Center, Athens, Greece; ⁴ University of Edinburgh, UK; ⁵ Heavy Ion Laboratory, Warsaw, Poland; ⁶ CSNSM, Orsay, France; ⁷ Università di Padova, Italy; ⁸ INFN Sez. di Padova, Italy; ⁹ Università degli Studi di Firenze and INFN Sez. di Firenze, Italy

Motivation: triaxiality in Ge isotopes

J. Hakala et al, PRL 101 (2008) 052502

- Local minimum of the effective N=50 gap at Z=32, associated to a maximum of collectivity
- Substantial evidence for triaxiality in Ge isotopes:
 - \circ observation of quasi-gamma bands (2⁺₂, 3⁺₁, 4⁺₂)
 - odd-even staggering in the gamma band in ⁷⁶Ge interpreted as rigid triaxiality (Y. Toh *et al*, PRC 87 (2013) 041304)
 - analysis of 80 Ga \rightarrow 80 Ge beta decay: coexistence of collective gamma-soft and spherical *qp* structures in 80 Ge (D. Verney *et al*, PRC 87 (2013) 054307)

Motivation: triaxiality in Ge isotopes

- Triaxiality in stable Ge isotopes confirmed by measured transition probabilities
 - Full quadrupole sum rules approach or approximate evaluation consistent
- Transition probabilities and quadrupole moments in neutron-rich Ge isotopes crucial to understand evolution of triaxiality towards N=50
- Expected high intensities of Ge beams from SPES make a low-energy Coulex experiment feasible in a short measuring time

Experimental setup

 standard Coulex setup with annular DSSSD detector placed at forward angles; detection of recoils and scattered projectiles

- intense SPES beams (^{78,80}Ge: 10⁶ pps, ⁸²Ge: 10⁵ pps)
- heavy targets (Pb, Pt) to maximise Coulex cross section
- GOSIA calculations for 2 mg/cm² Pb target

What can we obtain with SPES beams?

- quadrupole moments of 2⁺₁ states in ^{78,80,82}Ge: rough estimate in one day of beamtime at 10⁵ pps, precise measurement (20-30% accuracy) possible at 10⁶ pps
- quadrupole moments of 2⁺₂ states in ^{78,80}Ge measurable at 10⁶ pps
- lifetimes of higher lying states few days at 10⁵ pps enough to get lifetimes of 4⁺₁ and 2⁺₂ states in N=50 ⁸²Ge
- possibility to identify the (unknown but predicted) 0⁺₂ state in ⁸⁰Ge in a few days measurement at 10⁶ pps
- detailed information on transition probabilities and static moments for ^{78,80,82}Ge, possibility to extract triaxiality parameters for ^{78,80}Ge via quadrupole sum rules approach

Quadrupole sum rules

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) K. Kumar, PRL 28 (1972)

- electromagnetic multipole operators are spherical tensors \rightarrow products of such operators coupled to angular momentum 0 are rotationally invariant
- operator products may be expressed using the intermediate state expansion formula

$$\frac{\langle Q^2 \rangle}{\sqrt{5}} = \langle i | \left[\text{E2} \times \text{E2} \right]^{\mathbf{0}} | i \rangle = \frac{1}{\sqrt{(2I_i + 1)}} \sum_{t} \langle i | | \text{E2} | i \rangle \langle t | | \text{E2} | i \rangle \left\{ \begin{array}{ccc} 2 & 2 & 0\\ I_i & I_i & I_t \end{array} \right\}$$

 $\langle Q^2 \rangle$: overall deformation parameter

Quadrupole sum rules: triaxiality

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) K. Kumar, PRL 28 (1972)

$$\sqrt{\frac{2}{35}} \langle \mathbf{Q}^3 \cos 3\delta \rangle = \langle i | \{ [\mathbf{E}2 \times \mathbf{E}2]^2 \times \mathbf{E}2 \}^{\mathbf{0}} | i \rangle$$
$$= \frac{1}{(2I_i + 1)} \sum_{t,u} \langle i || \mathbf{E}2 || u \rangle \langle u || \mathbf{E}2 || t \rangle \langle t || \mathbf{E}2 || i \rangle \left\{ \begin{array}{cc} 2 & 2 & 2 \\ I_i & I_t & I_u \end{array} \right\}$$

A. Andrejtscheff et al, Phys. Lett. B 329 (1994) 1

$\langle \cos 3\delta \rangle$: triaxiality parameter