Study of the Dynamical Dipole Resonance with stable and radioactive beams

D. Pierroutsakou INFN-Naples, Italy

Second SPES International Workshop May 26-28, 2014, Laboratori Nazionali di Legnaro, ITALY

- The physical problem
- Brief overview: experiments and theory
- DD in ^{40,48}Ca+^{152,144}Sm -> ¹⁹²Pb: new results
 - Perspectives with the SPES RIBs

Nuclear collective modes: a well organized behavior of a complex system

Giant Dipole Resonance (GDR) \rightarrow out of phase collective oscillation of protons and neutrons of the nucleus: emission of dipole γ -rays

Dynamical Dipole (DD) \rightarrow excitation of a **pre-equilibrium GDR** in charge-asymmetric heavy-ion collisions: emission of **prompt** dipole γ -rays

DD: why to study

1) insight on the reaction dynamics: charge equilibration

2) informations on the density dependence of the nuclear matter EOS at $\rho < \rho_0$ (neutron stars, supernovae explosion, halo nuclei ...): a way to probe the isovector part of the inmedium effective interaction at low densities

3) new cooling mechanism in fusion reactions

DD: theory and experiment

Several theoretical models were used to describe the DD γ emission such as: Time dependent Hartree-Fock, Boltzmann-Nordheim-Vlasov, Constrained Molecular Dynamics, Isospin-dependent Quantum Molecular Dynamics

C. Simenel et al., PRL86 (2001) 2971, A. S. Umar and V. E.Oberacker, Phys. Rev.C76 (2007) 014614, P. Chomaz, M. Di Toro, and A. Smerzi, Nucl. Phys. A563(1993) 509, V. Baran et al., Nucl. Phys. A600, 111 (1996) 111, M. Papa et al., Phys. Rev. C 68 (2003) 034606; 72, (2005) 064608, . Baran, D. Brink, M. Colonna and M. Di Toro, PRL87 (2001) 182501, L. Wu et al PRC 81 (2010) 047602], Ma et al Phys. Rev. C 87 (2013) 014621

Experimentaly the DD radiation was probed in peripheral and fusionevaporation heavy-ion reactions

L. Campajola et al., Zeit. für Phys. 352 (1995) 421, Flibotte et al., Phys. Rev. Lett. 77 (1996) 1448, M. Sandoli, Z. Phys. A357 (1997) 67 and EPJA6 (1999) 275, , M.Papa et al., PRC 68 (2003) 034606 and PRC 72 (2005) 064608, D. Pierroutsakou et al., EPJA16 (2003) 423, F. Amorini et al., PRC 69 (2004) 014608

DD data in fusion-evaporation reactions

A study of the DD excitation function in the range (6 - 16) MeV/nucleon was performed and first angular distribution data were given (SERPE @ LNL and MEDEA @ LNS) in the reaction pairs leading to the ¹³²Ce nucleus : ^{36,40}Ar+^{96,92}Zr D(t=0)= (20.6-4)fm

 $^{32,36}S+^{100,96}Mo D(t=0)=(18.2-1.7)fm$

D. Pierroutsakou et al., EPJA 17 (2003) 71, PRC 71 (2005) 054605, PRC 80 (2009) 024612, B. Martin et al., PLB 664 (2008) 47

Data on the same compound nucleus in a similar E_{lab} range were obtained by the Milan group and NUCLEX collaboration (**HECTOR + GARFIELD @ LNL**) by using a different reaction and a different technique (*see talk S. Barlini*): ¹⁸O+¹¹⁶Sn D(t=0) = 8.6 fm

A. Corsi et al PLB 679 (2009) 197, A. Giaz et al., (INPC 2013)

Evidence of DD radiation has been shown also at higher E_{lab}=25 MeV/nucleon (**TRASMA @ LNS**) in the reaction pair:

⁴⁰Ca+⁴⁸Ca,⁴⁶Ti (D(t)=(15.4-3-9) fm

F. Amorini et al., PRC 69 (2004) 014608

DD: where we are

Few data exist providing the **absolute value** of the DD multiplicity and its **angular distribution** to be compared with calculations.

Calculations are not able to reproduce simultaneously the experimental findings, while the comparison of the experimental data sets with each other show that different aspects on the DD excitation should be still clarified

The above elements call for further experimental investigation to disentagle the influence of the different reaction parameters on the DD features and to constraint the theoretical models

DD in heavier nuclei ¹⁹²Pb

PhD C. Parascandolo

DD: cooling in fusion reactions

As a fast cooling mechanism of the composite system the prompt DD radiation could be used to favour the super heavy element formation through hot fusion reactions

Cold fusion reactions \rightarrow larger CN survival probability

Hot fusion reactions \rightarrow larger CN formation probability

V. Baran *et al.,* PRL 87(2001) 182501 C. Simenel *et al.,* PRC 76(2007) 024609

Does the DD yield decrease with increasing the mass of the reaction partners as TDHF calculations predict???

C. Simenel *et al.*, PRL 86(2001) 2971

Investigate the existence and the features of the DD in heavier composite systems

Experimental method:

Comparison of the energy spectra and the angular distributions of the γ rays emitted in two reactions with different charge asymmetry that populate the same CN with identical excitation energy and identical spin distribution

Evidence of the dynamical dipole mode:

1)Extra yield γ (prompt dipole radiation) for the charge asymmetric system at E_{DD} < E_{GDR}
 2)anisotropic γ-ray excess angular distribution

Dynamical Dipole in ¹⁹²Pb at $E_{lab} \sim 11 \text{ MeV/nucleon}$

simultaneous investigation in fusion-evaporation and fission events simultaneously for the first time

⁴⁰ Ca + ¹⁵² Sm	⁴⁸ Ca + ¹⁴⁴ Sm	¹⁹² <i>Pb</i> E*=220 MeV
$E_{lab} = 440 \text{ MeV}$	$E_{lab} = 485 \text{ MeV}$	$L_{\rm func} = 74\hbar$
D(t=0)=30.6fm	D(t=0)=5fm	$L_{fus,evap} = 36\hbar$
$\Delta = 0.22$	$\Delta = 0.18$	$B_{f}(I=0) = 10.4 MeV$

Detection of evaporation residues and fission fragments in singles and in coincidence with γ-rays (charged particles)

No normalization factors in γ–ray and particle spectra CN saturated spin: identical spin distribution Identical E* determined from the light particle energy spectra at different angles

Experimental set up: MEDEA + PPACs

Experimental set up

γ-ray and charged particle detectors

MEDEA (LNS): 180 BaF₂ (48 at θ =90°), d=22 cm ($\Delta\Omega$ = 3.37 π sr)

Evaporation residue detectors

4 position sensitive PPAC's symmetrically around the beam $\theta = 7^{\circ} \pm 3.75^{\circ}$ at d=70 cm from the target ($\Delta\Omega_{\text{total}} = 0.089$ sr)

Fission fragment detectors

4 position sensitive PPAC's symmetrically around the beam at θ = 52.5° ± 11° ($\Delta \phi$ =22°) at d=16 cm from the target ($\Delta \Omega_{PPAC}$ = 0.16 sr)

γ ray excess

Fission Evaporation $40_{Ca+}152_{Sm}$ ⁴⁰Ca+¹⁵²Sm 10⁻³ 10⁻³ ⁴⁸Ca+¹⁴⁴Sm ⁴⁸Ca+¹⁴⁴Sm dM $_{\gamma}$ /dE $_{\gamma}$ d Ω_{γ} (MeV $^{-1}$ sr $^{-1}$) 10⁻⁴ 10-4 10⁻⁵ 10⁻⁵ 3x10⁻⁵ 4x10⁻⁵ 2x10^{-⁵} 2x10⁻⁵ 1x10⁻⁵ 0 0 -2x10⁻⁵ -1x10⁻⁵ % difference 10 20 0 0 -10 -20 17 18 19 16 17 18 19 20 6 7 8 9 12 13 14 15 16 20 6 7 8 9 12 13 14 15 10 11 10 11 E_v (MeV) E_v (MeV)

A γ ray excess was observed in the charge asymmetric system independently of the exit channel: pre-equilibrium emission **The DD survives in heavy composite system** $E_{DD} = 11 \text{ MeV}, \Gamma_{DD} = 3.5 \text{ MeV}$ $dM_{\gamma}/d\Omega_{\gamma} = (1.0\pm0.3) 10^{-4} \text{ y/sr} (8-16 \text{ MeV})$ $E_{DD} < E_{GDR} = 13.5 \text{ MeV}$ emission before shape equilibration

DD γ -ray angular distribution in evaporation events

$$M(\mathcal{P}_{\gamma}) = M_0 [1 + Q_2 a_2 P_2(\cos \mathcal{P}_{\gamma})]$$

Very asymmetric energy integrated (10-14 MeV) angular distribution of the DD γ -rays with respect to the beam direction: pre-equilibrium emission

DD: Theory

BNV transport model: the reaction dynamics is described in a microscopic approach based on semiclassical transport equations where mean field and two body collisions are treated in a self-consistent way

EoS dependent on ρ + nuclear medium reduced n-n cross sections Evolution of the dipole moment D(t)=(NZ/A) * X(t)

Dynamical Dipole γ -ray emission obtained from the **Bremsstrahlung formula**:

$$\frac{dP}{dE_{\gamma}} = \frac{2e^2}{3\pi\hbar c^3 E_{\gamma}} \left(\frac{NZ}{A}\right)^2 \left|X^{\prime\prime}(\omega)\right|^2$$

V. Baran, D.M. Brink, M. Colonna and M. Di Toro, PRL 87 (2001) 182501

BNV calculations for ⁴⁰Ca+¹⁵²Sm at E_{lab}=11A MeV

10

12

E_{lab} (MeV/nucleon)

14

16

18

8

6

0,0

4

Integration over impact parameter for central collisions:

 1) E_{GDR}-E_{DD}=2.5 MeV, Γ_{DD}=4 MeV, angular distribution in agreement with the data
 2) DD strength largely overpredicts the data for both Asysoft and Asystiff choices: mass effect? Target defomation?

 \rightarrow further investigation is needed

Summary for the ^{40,48}Ca + ^{152,144}Sm reactions

- The DD survives in heavy composite systems;
- $E_{DD} < E_{GDR} \rightarrow$ pre-equilibrium emission;
- Large anisotropy of DD γ-ray angular distribution -> pre-equilibrium emission;
- The DD γ yield was observed in both evaporation and fission events
 -> pre-equilibrium emission;
- BNV transport calculations predict centroid, width and angular distributions of the DD in agreement with the data but they overpredict the yield: other parameters should be taken into account

Systematic study of the DD with charge asymmetry, incident energy, mass asymmetry and mass by using stable and radioactive beams produced by SPES. Radioactive beams maximize the initial dipole moment between interacting ions. Moreover, the combination of stable and radioactive beams allow to have a large variety of target-projectile combinations.

Perspectives with stable and radioactive beams

Projectile	Target	Beam type	CN	D(t=0) fm	Δ (t=0)
¹¹² Cd	⁸⁰ Se		¹⁹² Pb	1.8	0.06
⁴⁸ Ca	¹⁴⁴ Sm		¹⁹² Pb	5.3	0.18
⁸⁶ Kr	¹⁰⁶ Pd		¹⁹² Pb	8.0	0.03
¹¹⁰ Cd	⁸² Se		¹⁹² Pb	11.2	0.05
⁸⁸ Kr	¹⁰⁴ Pd	RIB	¹⁹² Pb	17.4	0.03
⁹³ Sr	⁹⁹ Ru	RIB	¹⁹² Pb	19.0	0.01
⁹⁴ Sr	⁹⁸ Ru	RIB	¹⁹² Pb	23.6	0.01
³² S	¹⁶⁰ Dy		¹⁹² Pb	24.1	0.26
⁹⁰ Kr	¹⁰² Pd	RIB	¹⁹² Pb	26.8	0.02
⁴⁰ Ca	¹⁵² Sm		¹⁹² Pb	30.6	0.22
⁹⁶ Sr	⁹⁶ Ru	RIB	¹⁹² Pb	33.0	0.00
¹³⁴ Te	⁵⁸ Ni	RIB	¹⁹² Hg	41.3	0.14

Symmetry Energy dependence on ρ at $\rho < \rho_0$ by studying the DD in ^{132,124}Sn+ ⁵⁸Ni at E_{lab} = 10A MeV

Asysoft EOS with respect to Asystiff EOS

 E_{sym} larger at $\rho < \rho_0$ Larger isovector restoring force

DD parameters: Asysoft with respect to Asystiff EOS Larger centroid, larger width, larger yield, different angular distribution for high impact parameters The differences in the DD parameters can be observed experimentally for the more "exotic" system ¹³²Sn+⁵⁸Ni (D= 45 fm) DD yield larger by 30% with the Asysoft EoS choice

V. Baran, M. Di Toro, M. Colonna et al., PRC79(2009) 021603

Reactions to study with the SPES RIBs:

¹⁹⁰Pt CN: ¹³²Sn+⁵⁸Ni (I)= 3.11*10⁷ pps (D=45 fm) and ⁴⁸Ca+¹⁴²Ce (D=3.13 fm)
¹⁹⁰Hg CN: ¹³²Te+⁵⁸Ni (I)= 8.4*10⁸ pps (D=38.5 fm) and ⁴⁸Ca+¹⁴²Nd (D=2.2 fm)
¹⁹²Hg CN: ¹³⁵I+⁵⁸Ni (I)= 3.5*10⁹ pps (D=39.5 fm) and ⁴⁸Ca+¹⁴⁴Ce (D=0 fm)
¹⁹²Hg CN: ¹³⁴Te+⁵⁸Ni (I)= 2.3*10⁸ pps (D=41.3 fm) and ⁴⁸Ca+¹⁴⁴Nd (D=0 fm)

We are interested in Te, Kr, Sr, Sn and Cs RIBs

Need of a high purity pulsed RIB with a time resolution of 1 ns

I=5*10⁸ pps necessary to obtain the DD energy- and angle-integrated yield with a relative error of about 10% with a solid angle coverage of 4.3 sr (34% of 4π) in a 10-days run.

A larger intensity by one order of magnitude needed for decreasing the error down to 3% to allow more accurate comparisons with theoretical predictions and to study the DD angular distribution with enough statistics.

γ-ray detection :

Energy resolution~ 7% at 1 MeV High efficiency for high energy (25-30 MeV) γ rays Time resolution ~ 1 ns Neutron rejection from the γ spectra with TOF and pulse shape analysis Granularity for spin selection

Detection of evaporation residues, fission fragments, complex fragments

In case of incident energy larger 8 MeV/nucleon, particle pre-equilibrium emission sets in : **detection of light charged particles and neutrons** γ**-rays**

6 clusters of 7 BaF₂ (hexagones of TAPS standard type d_{inner} = 5.9 cm, L= 25 cm= 12 X_o, X_o = radiation length,) all faces optically polished at 28 cm from the target in and out of plane $\epsilon_{\gamma} \sim 5.10^{-3}$ for E_{γ} = 15 MeV, $\Delta\Omega_{cluster}$ = 0.27 sr $\Delta\Omega_{tot}$ = 1.62 sr

reaction products 4 position sensitive PPACs at θ = 7°, d=70 cm, $\Delta\Omega$ =0.089 sr for evaporation residues

4 position sensitive PPACs at $\theta = 50^{\circ}$, d=15 cm, $\Delta\Omega=0.16$ sr (for fission fragments)

12 three-stage telescopes (IC+ Silicon Strip detectors +CsI (TI) crystals) for peripheral reaction fragments

TRASMA apparatus at LNS

9 clusters of 7 BaF₂ : 3 clusters identical to those of the SERPE apparatus $\Delta \Omega_{\text{cluster}} = 0.27 \text{ sr}$ SERPE+TRASMA $\Delta \Omega_{\text{tot}} = 4.05 \text{ sr}$ (32% of 4π , 19% with identical BaF₂)

MEDEA apparatus at LNS

180 BaF₂ d=22 cm ($\Delta\Omega$ = 3.37π sr)

Detection of γ -rays and light charged partcles

TOF and pulse shape discrimination: neutron rejection

Different existing or under construction arrays of second generation scintillators (better energy resolution, good time resolution, efficiency if in large volume) can be employed for the detection γ rays **HECTOR+LaBr3:Ce** (talk of F. Camera) Composite array **PARIS** (talk of A. Maj)

NEDA (talk J. Nyberg), CLYC (talk of F. Camera) for detection of neutrons
 GARFIELD, FAZIA (talk S. Barlini, G. Casini), FARCOS (talk Pagano), ... for the detection of charged particles

.

LOI for SPES

Study of the Dynamical Dipole Resonance mode with the SPES radioactive beams

D. Pierroutsakou¹, C. Parascandolo¹, R. Alba², V. Baran³, M. Colonna², A. Del Zoppo², A. Guglielmetti⁴, T. Glodariu³, M. La Commara⁵, G. La Rana⁵, C. Maiolino², M. Mazzocco⁶, A. Pakou⁷, C. Rizzo², D. Santonocito², C. Signorini⁶, O. Sgouros⁷, F. Soramel⁶, V. Soukeras⁷, S. Stiliaris⁸, E. Strano⁶, L. Stroe³, D. Torresi⁶, E. Vardaci⁵

 ¹INFN - Sezione di Napoli, via Cinthia, I-80126, Napoli, Italy
 ²INFN, Laboratori Nazionali del Sud, via Santa Sofia, I-95123 Catania, Italy
 ³NIPNE-HH, 077125 Magurele, Romania
 ⁴Università degli Studi di Milano, Milano, Italy and INFN- Sezione di Milano, via Celoria 16, I-20133 Milano, Italy
 ⁵Dipartimento di Scienze Fisiche, Università di Napoli, via Cinthia, I-80126, Napoli, Italy
 ⁶Dipartimento di Fisica and INFN - Sezione di Padova, via Marzolo 8, I-35131, Padova, Italy
 ⁷Department of Physics and HINP, The University of Ioannina, 45110 Ioannina, Greece
 ⁸Department of Physics, National and Kapodistrian, University of Athens and the Institute of Accelerating Systems & Applications, (IASA), 15771 Athens, Greece