Direct reactions with SPES beams: Nuclear magicity at Z~50 and N~82 n-capture cross section via surrogate method

G. de Angelis, D. Mengoni, N. Erduran

INFN - LNL, Legnaro Italy INFN - Sezione and University, Padova - Italy Sabahattin Zaim University, Istanbul - Turkey

> SPES workshop, LNL - Italy May 26÷28, 2014

D.Mengoni (UniPd)

DR with SPES

May 28, 2014 2 / 24

Collaboration

G. de Angelis¹, M. Gelain¹, F.Gramegna¹, T. Marchi¹, V. Modamio¹, D.R. Napoli¹, G. Prete¹, J.J. Valiente-Dobón¹, D. Mengoni², D. Bazzacco², A. Boso², S. Lunardi², S. Lenzi², R. Menegazzo², F. Recchia², M. N. Erduran³, S. Erturk⁴, A. Kusoglu⁵, M. Yalcinkava⁵ A. Gargano⁶, G. La Rana⁶, A. Nannini⁷, B. Melon⁷, G. Casini⁷, C.Michelagnoli⁸, D. Verney⁹, M. Assié⁹, F. Azaiez⁹, D. Beaumel⁹, Y. Blumenfeld⁹, M.-C. Delattre⁹, S. Franchoo⁹, F. Ibrahim⁹, A. Gottardo⁹, R. Li⁹, I. Matea⁹, P. Morfouace⁹, I. Stefan⁹, D. Suzuki⁹, D.T Yordanov⁹, A. Gadea¹⁰, D. Tonev¹¹, P. Petkov¹¹, B. Blank¹², J. Praena¹³, S. Pain¹⁴, M. Smith¹⁴, K. Chipps¹⁴, K. Jones¹⁵, A. Ratkiewicz ¹⁶, T. Baugher ¹⁶, J. Cizewski ¹⁶, R. Kozub¹⁷, D. Bardayan¹⁸, J.F. Smith¹⁹, M.Scheck¹⁹, R. Chapman¹⁹ ¹INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy, ²Dipartimento di Fisica e Astronomia and INFN, Sezione di Padova, Padova, Italy. ³Istanbul Sabahattin Zaim University, Turkey.⁴ Nigde University, Turkey.⁵ Istanbul University, Turkey. ⁶Dipartimento di Fisica and INFN. Sezione di Napoli, Padova, Italy, ⁷Dipartimento di Fisica and INFN, Sezione di Firenze, Padova, Italy. ⁸GANIL, Caen, France. ⁹IPN Orsay, IN2P3/CNRS-University of Paris Sud (France). ¹⁰Instituto de Fisica Corpuscular, Valencia, Spain. ¹¹Institut for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria. ¹²CENBG, Bordeaux, France. ¹³CNA, Sevilla, Spain. ¹⁴ORNL, USA. ¹⁵University of Tennessee, USA. ¹⁶Rutgers University, USA. ¹⁷Tennessee Technological, USA. ¹⁸ University of Notre Dame, USA. ¹⁹ UWS in Paisley, PA1 2BE Paisley, Scotland, UK.

Nuclear Physics

D.Mengoni (UniPd)

DR with SPES

May 28, 2014 4 / 24

Around doubly-magic ¹³²Sn

SO term in exotic matter

SO-interaction scales with the derivative of the nucleon densities

Shift of the proton single-particle energies monopole part of the nuclear force

Attractive when spins of nucleons are antiparallel to their orbital angular momenta

Nucleosynthesis processes

Implications on nuclear astrophysics

Burbidge, Burbidge, Fowler, Hoyle, Rev. Mod. Phys. 29 (1957) 547

D.Mengoni (UniPd)

Solar abundances

Implications on nuclear astrophysics

determined from solar and stellar spectra and from meteorites

N. Grevesse and A.J. Sauval, Space Science Reviews 85 (1998) 161

٢

Nuclei around doubly closed shells: why?

In the independent particle SM the properties of a odd nucleus are determined by the odd unpaired nucleon. This is expecially true for magic numbers that corresponds to significant gap in SPE.

Test of the model and its prediction capacity:

- SPE
- TBME

Around 132Sn

- Doubly-magic nucleus (with extreme N/Z)
- Proximity of the r-process path
- Proximity of the continuum states
- Three-body forces, appearence of new (sub-)shells

Experimental background

RIKEN EURICA *β*-decay campaign

D.Mengoni (UniPd

Z=51 proton orbits

core coupling (2⁺,3⁻) : 9/2⁺, 11/2⁺, 3/2⁺, 1/2⁺

O.Sorlin et al., Prog.Part.Nucl.Phys. 61 (2008) 602 and reference therein

N=83 neutron orbits

- core coupling (2⁺,3⁻) with neutron f_{7/2}
- neutron single particle states

O.Sorlin et al., Prog.Part.Nucl.Phys. 61 (2008) 602 and reference therein

Transfer beyond Z=50 ^ASn(⁴He,t)^{A+1}Sb)

- Spectroscopic factors deduced for /=4,5 using DWBA model
- 7/2 and 11/2 states show a single-particle character
- Tensor part of interaction is fundamental to reproduce the exp trend

- J.P.Schiffer et al., Phys.Rev.Let.92, (2004) 162501
- T.Otsuka et al., Nucl.Phys. A 805 (2008) 127c

Transfer beyond N=82 ^AX(⁴He,³He)^{A+1}X) for ¹³⁸Ba,¹⁴⁰Ce,¹⁴²Nd,¹⁴⁴Sm

- Spectroscopic factors deduced for /=5,6 using DWBA model
- Energy difference fairly similar, no swap visible in the experiment
- Agreement LSSM calculations, discrepancies with MF.

- B.P.Kay et al., Phys.Lett.B658(2008) 216
- T.Otsuka et al., Phys.Rev.Lett.95 (2005) 232502

D.Mengoni (UniPd

SO evolution with neutron excess

- density (rms and diffuseness) are most similar
- proton and neutron Fermi surface are equal

J.P.Schiffer et al., Phys.Rev.Let.92, (2004) 162501

LETTERS

The magic nature of ¹³²Sn explored through the single-particle states of ¹³³Sn

K. L. Jones^{1,2}, A. S. Adekola³, D. W. Bardayan⁴, J. C. Blackmon⁴, K. Y. Chae¹, K. A. Chipps⁵, J. A. Cizewski², L. Erikson³, C. Harlin⁴, R. Hatarik², R. Kapler¹, R. L. Kozub⁵, J. F. Liang⁴, R. Livesay³, Z. Ma¹, B. H. Moazen³, C. D. Nesan³, F. M. Nune⁵, D. Dain⁷, N. P. Patterson¹, D. Shapira³, J. F. Shirner J², M. S. Smith³, T. P. Swan³ & J. S. Thomas⁴

- single particle strength (S) concentrated in one state
- large discontinuites in numerous observables

LSSM calculations

Theoretical predictions outside N=82, compared with N=126

- Few valence particle nuclei above the doubly-closed magic 132Sn core
- realistic interacion
- good results for isotopes of Sn, Sb, Te, I, Xe, Cs with different interactions for 134 ≤ A ≤ 138 and 50 ≤ Z ≤ 56

L.Coraggio et al., Phys.Rev.C(R) 80 (2009) 021305

HFB calculations

Theoretical predictions outside Z=50 and N=82

D.Mengoni (UniPd

What we can probe? and how?

n states (d,p) for neutron pickup, (d,t) for neutron stripping p states (³He,d) for proton pickup, (t, α) or (d,³He) for proton pickup pairing (t,p) or (p,t) for n-n pairing pairing (p,³He) or (d, α) for n-p pairing

target

- CH₂/CD₂ loaded carbon
- cryogenic gaseous
- jet

Proposed reactions at SPES

Expected SPES-beam intensity: 10^{5+8} pps (10^5 required on target for transfer reactions at ISOLDE)

Systematic measurements in the region (d,p): ¹³³Sn, ¹³⁴Sn, ¹³³Sb, ¹³¹In (d,t): ¹³¹Sn, ¹³⁴Sn, ¹³¹In (d,³He): ¹³¹Sn, ¹³³Sn, ¹³¹In

complemented by Coulomb excitation measurements?

Indirect Determination of Cross Sections

The Surrogate Nuclear Reactions approach is an indirect method for determining XS of CN reactions difficult to measure directly.

(n, γ) cross section

Various direct-reaction mechanisms can be employed to create the compound nucleus of interest.

D.Mengoni (UniPc

Detector Setup

AGATA, GALILEO

TRACE, SPIDER

Solenoid

D.Mengoni (UniPd)

Summary and conclusions

 SPES RIB: 10⁵⁻⁸ pps
N~82, Z~51: Spectroscopic factor in Sb,Sn,In
Detection Setup: AGATA, TRACE, SOLE, (SPIDER, DANTE)

D.Mengoni (UniPd)