Neutron-rich heavy nuclei explored via multinucleon transfers ### S. Szilner¹, J. J. Valiente Dobón², D. Montanari³ ¹ Ruđer Bošković Institute and University of Zagreb ² Istituto Nazionale di Fisica Nucleare - Sezione di Legnaro ³ Institut d'Etudes Avancés - Université de Strasbourg and IPHC-CNRS L.o.I. for the SPES radioactive beam project at LNL # Main objective #### Radioactive SPES beams to: - produce neutron-rich nuclei (Z ≥ 50), - study their structure. #### Experimental setup: - high efficiency γ-detector arrays GALILEO and AGATA, - in suitable cases coupled with the large solid-angle spectrometer PRISMA. # Transfer reactions with heavy ions - Ruled by structure properties (form factors) and optimum Q-value, - the process is mostly controlled by the light partner. - Possibility to populate different regions of the nuclide chart. # Heavy ion transfer reactions C.H.Dasso, G. Pollarolo, A. Winther Phys. Rev. Lett. 73, 1907 (1994) #### with neutron rich beams - neutron stripping and proton pick-up - Heavy partner to the (neutron-rich side) of the stability valley #### with stable beams - neutron pick-up and proton stripping - Heavy partner to the "left" of the stability valley # **Experimental methods** # Studying heavy target-like reaction products **Experimental difficulties** for ion detection At energies close to the Coulomb barrier - Low kinetic energies of fragments, - □ Low mass (A), charge (Z) and energy resolution - Secondary processes limit the final yield #### particle- γ coincidence Thin targets, detecting projectile-like partner with the magnetic spectrometer and studying γ 's of the heavy partner. #### γ - γ and γ - γ - γ measurements To be done with heavier systems with **thick targets**. Possible only if performed with **very efficient** γ -detectors arrays. # **Proposed reaction** #### Thin target - Beams close to Z=50, A=132 (^{132,134}Te and ^{128.130}Sn) - Target ²⁰⁸Pb (or U) Measurement performed detecting the **light partner** with the **PRISMA** spectrometer coupling γ -arrays (**GALILEO** and **AGATA**) #### Thick target - Intense A \sim 95 (93,94 Rb) - Target ²⁰⁸Pb - Possibility to use other targets (Os, Pt, Au) Measurement performed using high efficient γ -arrays **GALILEO** and **AGATA** to perform γ - γ and γ - γ - γ coincidences # **Proposed reaction** #### Calculation performed with GRAZING code: cross section **projectile-like** reaction products in ¹³⁰Sn+²⁰⁸Pb **target-like** reaction products in ⁹⁴Rb+²⁰⁸Pb U P 1 | P 1 = P 1 = P 9 0 0 #### Structure studies #### Around double shell closure Region around ²⁰⁸Pb experimentaly difficult to be explored #### Present studies $\begin{array}{l} \textbf{Multi-nucleon transfer} \\ \textbf{reactions. lons populated up} \\ \textbf{to A} {=} 211 \end{array}$ Nucl. Part. Phy. 32R151 (2006) **Fragmentation**. lons populated up to A=216 PRL 109 162502 (2012), PLB 725 (2013) 292 #### Pilot experiment # Accepted by the ISOLDE and Neutron ToF Committee. Important to understand: - the possibility of populating the n-rich heavy-mass region through transfer reactions. - the existence of the predicted 16⁺ state isomer in Pb isotopes - □ the nature of the **very low** (3⁻?) state in ²¹⁰Hg. # Summary # We propose to study the n-rich heavy mass region ($Z \ge 50$) via multinucleon transfer (MNT) reactions - To explore the possibility of producing n-rich nuclei via MNT - To perform studies of their structure to shed light on some still open questions. #### Two kinds of experiment: - **thick target** exploiting the high efficiency γ -arrays GALILEO and/or AGATA to perform γ - γ and γ - γ - γ coincidences, - thin target coupling GALILEO and/or AGATA to the PRISMA spectrometer. Pilot experiment already approve at ISOLDE # **Experimental methods** #### **Binary reaction** Secondary processes, i.e. evaporation and fission, may be taken into account looking at γ -spectra in coincidence with the detected particle in the spectrometer.