Neutron-rich heavy nuclei explored via multinucleon transfers

S. Szilner¹, J. J. Valiente Dobón², D. Montanari³

¹ Ruđer Bošković Institute and University of Zagreb

² Istituto Nazionale di Fisica Nucleare - Sezione di Legnaro

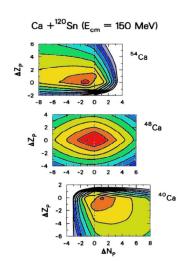
³ Institut d'Etudes Avancés - Université de Strasbourg and IPHC-CNRS

L.o.I. for the SPES radioactive beam project at LNL

Main objective

Radioactive SPES beams to:

- produce neutron-rich nuclei (Z ≥ 50),
- study their structure.


Experimental setup:

- high efficiency γ-detector arrays GALILEO and AGATA,
- in suitable cases coupled with the large solid-angle spectrometer PRISMA.

Transfer reactions with heavy ions

- Ruled by structure properties (form factors) and optimum Q-value,
- the process is mostly controlled by the light partner.
- Possibility to populate different regions of the nuclide chart.

Heavy ion transfer reactions

C.H.Dasso, G. Pollarolo, A. Winther Phys. Rev. Lett. 73, 1907 (1994)

with neutron rich beams

- neutron stripping and proton pick-up
- Heavy partner to the (neutron-rich side) of the stability valley

with stable beams

- neutron pick-up and proton stripping
- Heavy partner to the "left" of the stability valley

Experimental methods

Studying heavy target-like reaction products

Experimental difficulties for ion detection

At energies close to the Coulomb barrier

- Low kinetic energies of fragments,
- □ Low mass (A), charge (Z) and energy resolution
- Secondary processes limit the final yield

particle- γ coincidence

Thin targets, detecting projectile-like partner with the magnetic spectrometer and studying γ 's of the heavy partner.

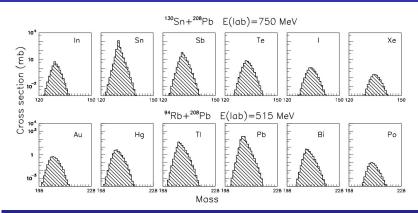
γ - γ and γ - γ - γ measurements

To be done with heavier systems with **thick targets**. Possible only if performed with **very efficient** γ -detectors arrays.

Proposed reaction

Thin target

- Beams close to Z=50, A=132 (^{132,134}Te and ^{128.130}Sn)
- Target ²⁰⁸Pb (or U)


Measurement performed detecting the **light partner** with the **PRISMA** spectrometer coupling γ -arrays (**GALILEO** and **AGATA**)

Thick target

- Intense A \sim 95 (93,94 Rb)
- Target ²⁰⁸Pb
- Possibility to use other targets (Os, Pt, Au)

Measurement performed using high efficient γ -arrays **GALILEO** and **AGATA** to perform γ - γ and γ - γ - γ coincidences

Proposed reaction

Calculation performed with GRAZING code: cross section

projectile-like reaction products in ¹³⁰Sn+²⁰⁸Pb **target-like** reaction products in ⁹⁴Rb+²⁰⁸Pb

U P 1 | P 1 = P 1 = P 9 0 0

Structure studies

Around double shell closure

Region around ²⁰⁸Pb experimentaly difficult to be explored

Present studies

 $\begin{array}{l} \textbf{Multi-nucleon transfer} \\ \textbf{reactions. lons populated up} \\ \textbf{to A} {=} 211 \end{array}$

Nucl. Part. Phy. 32R151 (2006) **Fragmentation**. lons populated up to A=216 PRL 109 162502 (2012), PLB 725 (2013) 292

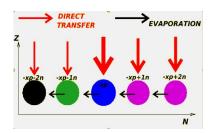
Pilot experiment

Accepted by the ISOLDE and Neutron ToF Committee. Important to understand:

- the possibility of populating the n-rich heavy-mass region through transfer reactions.
- the existence of the predicted 16⁺ state isomer in Pb isotopes
- □ the nature of the **very low** (3⁻?) state in ²¹⁰Hg.

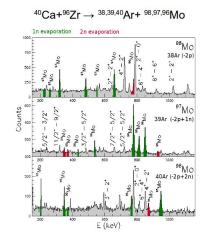
Summary

We propose to study the n-rich heavy mass region ($Z \ge 50$) via multinucleon transfer (MNT) reactions


- To explore the possibility of producing n-rich nuclei via MNT
- To perform studies of their structure to shed light on some still open questions.

Two kinds of experiment:

- **thick target** exploiting the high efficiency γ -arrays GALILEO and/or AGATA to perform γ - γ and γ - γ - γ coincidences,
- thin target coupling GALILEO and/or AGATA to the PRISMA spectrometer.


Pilot experiment already approve at ISOLDE

Experimental methods

Binary reaction

Secondary processes, i.e. evaporation and fission, may be taken into account looking at γ -spectra in coincidence with the detected particle in the spectrometer.

