Shape coexistence in Kr isotopes towards *N* = 60

A Letter of Intent for SPES

Victor Modamio LNL-INFN

Shape evolution

Shell effects appear at N=60 producing a striking quantum phase transition in Zr and Sr isotopes, besides the smooth increase of collectivity when going towards the mid-shell.

	Mo92	Mo93	Mo94	Mo95	Mo96	Mo97	Mo98	Mo99	Mo100	Mo101	Mo102	Mo103	Mo104	Mo105	Mo106
	0+	5/2+ **	0+	5/2+	0+	5/2+	0+	1/2+	0+ 8-8-	1/2+	0+	(3/2+)	0+	(5/2-)	0+
	14.84	EC	9.25	15.92	16.68	9.55	24.13	β-	6.b. b.b.	β-	β-	β-	β·	β	β-
	Nb91	Nb92	Nb93	Nb94	Nb95	Nb96	Nb97	Nb98	Nb99	Nb100	Nb101	Nb102	Nb103	Nb104	Nb105
	680 y 9/2+	3.47E+7 y (7)+	9/2+	2.03E+4 y (6)+	34.975 d 9/2+	23.35 h 6+	9/2+	2.86 s 1+	15.0 s 9/2+	1.5 s	7.1 s +	1.5 s	(5/2+)	4.8 s (1+)	2.95 s (5/2+)
7	*	*	*	*	*	0	*	*	*	*	0	* β−	ß-	в n *	ß
	Zr90	Zr91	Zr92	Zr93	Zr94	Zr95	Zr96	Zr97	Zr98	Zr99	Zr100	Xr101	Zr102	Zr103	Zr104
	0+	5/7+	0+	1.53E+6 y 5/2+	0+	64.02 d	3.9E19 y 0+	16.91 h 1/2+	30.7 s 0+	2.1 s (1/2+)	7.1 s 0+	2.1 s (/2+)	2.9 s 0+	1.3 s (5/2-)	1.2 s 0+
	*	59.24	0 1	0		0	β	e.	е.	(1/21) R.	Q.	e	R	0.	6.
	51.45 V200	11.22 X/00	17.15	p [.]	17.38	P V04	2.80 V05	P V06	p. V07	P. V06	P. V00	P [*]	P. V101	V102	P V103
	189	190 64.10 h	58.51 d	3.54 h	10.18 h	18.7 m	10.3 m	5.34 s	3.75 s	0.548 s	1.470 s	100 15 ms	448 ms	0.36 s	0.23 s
	1/2-	2- *	1/2- *	2-	1/2- *	2.	1/2-	0-	(1/2-) *	(0)- *	(5/2+)	1-,2- *	(5/2+)	*	(5/2+)
	100	β- "	4.	β-	β	β-	ß	β- 1	βm	βm	βm	βm	βm	βn	βn
	Sr88	Sr89	Sr90	Sr91	Sr92	Sr93	Sr94	Sr95	Sr96	Sr97	Sr98	r99	Sr100	Sr101	Sr102
	0+	50.53 d	28.78 y	9.63 h	2.71 h	7.423 m	75.3 s	23.90/s 1/24	1.07 s 0+	426 ms 1/2+	0.653 s 0+	0 269 s V2+	202 ms 0+	118 ms (5/2)	69 ms 0+
		0				0	0.	. 7	o.	0	0	. · · · ·	e	0	0
	82.58	p.	p.	p.	p Di or	p ^r	p D1.02	P DIGA	p.	pn DLOG	pn D107	DLOS	рл D1-00	рп Db100	pn Db101
4	.75E10 y	17.78 m	15.15 m	158 s	58.4 s	4.492 s	5.84 s	/2.702 s	377.5 ms	0.199 s	169.9 ms	114 ms	50.3 ms	51 ms	32 ms
	3/2-	2-	3/2-	0- "	3/2(-)	0-	5/2-	3(-)	5/2-	2+	3/2(+)	(1,0) *	(5/2+)		
j.	27.835	β-	β-	β- "	β	βn	βn	βn	βn	βm	β'n	β ⁻ n,β ⁻ 2n,	βm	β n,β 2n,	βn
	Kr86	Kr87	Kr88	Kr89	Kr90	Kr91	Kr92 /	Kr93	Kr94	Kr95	Kr96	Kr97			
	0+	76.3 m	2.84 h	3.15 m	32.32 s	8.57 s (577+)	1.840 s	1.286 s (1/2+)	0.20 s 0+	0.78 s 1/2	0+		67		64
		0	0	0	0	0	Re	R.n.	8.0	8.			02	1	0+
	17.3 D.,05	p. D.04	p. D.07	p. D00	P D.00	P-00	P.01	B-02	Pa Dr03	P-04			1		
	DF85	DI 90	Dr8/	Dr88	Dr89	DL20	Bist	D192	D195	D194	60				
											100				

N=50

Systematics

In ¹⁰⁰Zr and ⁹⁸Sr (N=60) occur one of the most abrupt shape transition. From slightly spherical nuclei to highly deformed ones.

At the same time, different shapes coexist at almost degenerated excitation energies!!

Is the shape coexistence playing an important role in the shape evolution in Zr, Sr and Kr isotopes?

Deformation in Kr

Mass measurements and B(E2)

The Kr chain indeed, develops a very smooth transition to deformed (probably prolate) shapes.

Albers et al. NIM A 899, 1 (2013)

Naimi et al. PRL 105, 032502 (2010)

Microscopic description

Sr (Z=38) and Zr (Z=100)

Strong correlations between the intruder proton $g_{9/2}$ and the neutron $h_{11/2}$ orbitals brings deformation in Zr and Sr at N=60.

Prolate minimum deformation $\beta = 0.4$

Kr (Z=36)

The occupation of the proton $g_{9/2}$ orbital is not enough to bring such rapid change in deformation to the system.

Deformed minimums on PES

Shapes in Kr

Oblate shape predominance

Shapes in Kr

Shape transition through 3 different minima.

TWO oblate minima dominate the low energy spectra.

50

0.6

40

30

20

10

0

0.8

Shapes in Kr

Shape transition to prolate shape on the second 0+, at N=62

Coulex @ SPES

Coulex experiment with MINIBALL

REX-ISOLDE intensities at the secondary target Albers et al. PRL 108, 062701 (2012)

Isotope	Year	I _{Kr} [pps]	$E_{\rm Kr}$ [MeV]	$t_{\rm Exp}$ [s]	$R_{ m Kr/Rb}$
⁹⁴ Kr	2009	8×10^4	267.9	60 4 80	75(6)/25(3)
	2010	4×10^5	267.9	43 560	74(7)/26(4)
⁹⁶ Kr	2009	4×10^{3}	273.6	32 760	43(4)/57(6)
	2010	7×10^{3}	273.6	59 400	46(7)/54(8)
	2011	$< 5 \times 10^{2}$	273.6		

SPES
Estimated intensities of
the Re-accelerated RIBs
C.B. eff=3- 4 %
Linac tr.=50%

Element	A	Z	Ν	T1/2 s	RIBs at 260KeV 1+	Re-accelerated RIBs C.B. eff=3-4% Linac tr.=50% particles/s	q+	Max E/A
Kr	85	36	49	3.39E+08	5,93E+08	1,19E+07	15	11,8
Kr	87	36	51	4.58E+03	2,97E+09	5,94E+07	15	11,6
Kr	88	36	52	1.02E+04	4,04E+09	8,08E+07	15	11,4
Kr	89	36	53	1.89E+02	3,99E+09	7,98E+07	15	11,2
Kr	90	36	54	3.23E+01	4,37E+09	8,74E+07	15	11,2
Kr	91	36	55	8.57E+00	2,12E+09	4,24E+07	15	11
Kr	92	36	56	1.84E+00	6,89E+08	1,38E+07	15	11
Kr	93	36	57	1.29E+00	2,28E+08	4,57E+06	15	10,8
Kr	94	36	58	2.00E-01	2,49E+07	4,99E+05	15	10,8
Kr	95	36	59	7.80E-01	1,14E+07	2,29E+05	15	10,6
Kr	96	36	60	3.20E-01	1,47E+06	2,94E+04	15	10,6
Kr	97	36	61	3.17E-01	4,84E+04	9,69E+02		

Experimental Setup

Safe Coulex experiment with thin Pt/Au secondary target

High efficiency gamma-array Si detectors for ion detection TRACE GALILEO SPIDER 0 AGATA

Experimental Setup

Additional ancillary detectors

Gass filled $\triangle E$ -E (Beam composition)

MINI-ORANGE device (Conversion electron E0 strengths)

Some gamma-ray detector @ beamdump

The Mini-Orange Spectrometer (MOS)

- Several permanent magnets surrounding a central lead plug
- Head-on view resembles segments of an orange
- Creates a torroidal magnetic field

Summary

- Safe Coulex with a RIB delivered by SPES will lead to populate the low-lying states in 96Kr and obtain transition strengths.
- Population of the first 0+ excited state: better understanding of the shape transition around N=60 in the Kr chain.
- Also, better understanding of the shape transition at N=60 for the Zr and Sr isotopes.
- Perfect playground for mean-field calculations.

Collaborators

J.J. Valiente-Dobón, G. de Angelis, T. Marchi, G. Jaworski, D.R. Napoli INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy D. Mengoni, P.R. John, S. Lunardi, D. Bazzacco, S. Lenzi, R. Menegazzo, F. Recchia, L. Grassi, A. Bosso Dipartimento di Fisica and INFN, Sezione di Padova, Padova, Italy T.R. Rodriguez Universidad Autónoma de Madrid, Spain. E. Clement, G. de France, C. Michelagnoli GANIL. France. A. Gadea, C. Domingo-Pardo, T. Huyuk, R. Perez-Vidal IFIC, CSIC, Valencia, Spain S. Szilner, T. Mijatovic Ruder Boskovic Institute, Zagreb, Croatia G. Benzoni, A.I. Morales, N. Blasi, A. Bracco, F. Camera, F. Crespi, S. Leoni, B. Million. O. Wieland Dipartimento di Fisica and INFN, Sezione di Milano, Milano, Italy. J. Nyberg, A. Gengelbach Uppsala University, Sweden. R. Orlandi

Japan Atomic Energy Agency, Tokai-mura, Japan.

Possible shape mixing

