Transfer reactions for r-process nucleosynthesis

Steven D. Pain

Oak Ridge National Laboratory

- r-process nucleosynthesis
- Transfer program at Oak Ridge
- Measurements with SPES Phase I

SPES 2nd International Workshop, 2014

r-process abundance patterns

Elemental abundances from individual metalpoor halo stars constraining r-process abundance patterns

J.J Cowan and C. Sneden, Nature 440, 1151 (2006)

r-process sensitivities

Ν

r-process sensitivities

Transfer program at Oak Ridge

Oak Ridge Rutgers University Barrel Array

- Barrel array of ion-implanted silicon strip detectors
- Custom resistive design used to achieve good position (~1 mm) and energy (<60 keV)
- 2 rings $-\theta < 90^\circ$: 12 telescopes (1000 μ m R + 65 μ m NR)
 - $-\theta > 90^{\circ}$: 12 detectors (500 μ m R)
- ORRUBA gives ~80% ϕ coverage over $\theta = 45^{\circ} \rightarrow 135^{\circ}$

Ionization Chamber

- Re-entrant
- Tilted-grid wire electrodes
 [K.Y. Chae *et al.*, *NIM A* **715C**, 6 (2014)]
- ~3 x 10⁵ pps rate +
- Acceptance of 4.5 deg +
- PRISMA for more intense beams

Letter of Intent for transfer reaction measurements at SPES for r-process nucleosynthesis

S.D. Pain,¹ D.W. Bardayan,² T. Baugher,³ D. Bazzacco,⁴ K.A. Chipps,^{1,5} J.A. Cizewski,³ G. De Angelis,⁶ K.L. Jones,⁵ R.L. Kozub,⁷ S. Lenzi,⁴ S. Lunardi,⁴ D. Mengoni,⁴ D.R. Napoli,⁶ W.A. Peters,^{1,5} A. Ratkiewicz,³ F. Recchia,⁴ M. Roberto,⁴ M.S. Smith,¹ and J.J. Valiente-Dóbon⁶
¹Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
²Physics Department, University of Notre Dame, South Bend, IN 46556, USA
³Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903, USA
⁴Dipartimento di Fisica and INFN, Sezione di Padova, Padova, Italy
⁵Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
⁶INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
⁷Physics Department, Tennessee Technological University, Cookeville, TN 38505, USA

TABLE I: Example experiments that could be performed with projected Phase 1 beams from SPES. In each case, data from the (d,p), (d,t) and $(d,^{3}He)$ reactions could be acquired simultaneously. In the case of experiments motivated primarily by constraining n-capture cross sections, the (d,p) reaction of foremost interest, but data on pickup reactions would also be acquired in such a measurement.

Beam	Projected intensity	Reactions	Primary motivation
^{80,81} Ge	8×10^4	$(d,t) (d,^{3}He)$	structure
81 Ge	1×10^4	$(d,p) (d,t) (d,^{3}He)$	n-capture
78,80,81 Ga	$8 \times 10^4, 1.5 \times 10^4, 3.5 \times 10^3$	$(d,p) (d,t) (d,^{3}He)$	n-capture
84 Se	7×10^4	$(d,t) (d,^{3}He)$	structure
129,131 Sn	$8.7 \times 10^6, \ 1.7 \times 10^6$	$(d,p) (d,t) (d,^{3}He)$	n-capture
130 Sn	4×10^6	$(d,t) (d,^{3}He)$	structure
$^{132}\mathrm{Sb}$	9×10^5	$(d,p) (d,t) (d,^{3}He)$	structure
$^{134}\mathrm{Sb}$	1.5×10^4	$(d,p) (d,t) (d,^{3}He)$	n-capture
$^{132,134,136,138}\mathrm{Te}$	2×10^7 , 5.8×10^6 , 2.7×10^5 , 1.1×10^4	$(d,p) (d,t) (d,^{3}He)$	structure, n-capture
$^{137}\mathrm{Xe}$	4×10^4	$(d,p) (d,t) (d,^{3}He)$	n-capture
$^{138,140,142}\mathrm{Xe}$	$5.6 \times 10^6, \ 3.4 \times 10^5, \ 1.8 \times 10^4$	$(d,p) (d,t) (d,^{3}He)$	structure, n-capture

Resolution contributions – 100, 200, 400 μ g/cm² target

