Proton-neutron balance of quadrupole-collective states of even-even n-rich Isotopes

N. Pietralla, V. Werner, G. Martinez-Pinedo (TU Darmstadt) G. Rainovski, M. Danchev, K. Gladnishki (U. Sofia) N. Lo Iudice, G. De Gregorio (U. Napoli Frederico II) F. Nowacki, K. Sieja (U. Strasbourg, CNRS)

> Volker Werner Senior Researcher, AG Pietralla / TU Darmstadt Adjunct Professor / Yale University

What are Mixed-Symmetry States

TECHNISCHE

UNIVERSITÄT DARMSTADT

Volker Werner | Sr. Researcher TU Darmstadt, AG Pietralla | Adj. Prof. Yale | 2nd SPES Int'l. Workshop | 28.5. 2014

Microscopic Theory: QPM

Consistent description of the MSSs of 134Xe, 136Ba and 138Ce, including the fragmentation in latter one, can be achieved by a slight (~300 keV) increase of the energy gap between $\pi g7/2$ and $\pi d5/2$ orbitals \Rightarrow

weaken the paring correlations

The splitting of the M1 strength in 138Ce is a genuine shell effect caused by the specific shell structure and the pairing correlations! -> Shell Stabilization

N. Lo Iudice, Ch. Stoyanov, D. Tarpanov, PRC 77 ('08) 044310

Microscopic Theory: Shell-Model

GCN5082 - realistic Bonn-C potential + empirical correction to the monopole part

K. Sieja, G. Martínez-Pinedo, L. Coquard, N. Pietralla, PRC80, 054311 ('09) Original interaction Modified pairing

- realistic SM calculations reproduce energy spacing between 2+1 and 2+1,mss in known cases ⇒ prediction for neighboring isotones.
- information on MSSs provides a tool to determine pairing matrix elements of realistic interactions as they depend very sensitively on the treatment of core polarization corrections.

experimental information on MSSs of 132Te and 140Nd needed!

Is Shell Stabilization generic?

ORNL - 2₁⁺ g factor Experiment

Experimental details:

- inverse kinematic reaction 132Te on a C target (0.83 mg/cm2);
- beam energy 3 MeV/u (80% CB);
- beam intensity 3 x 10⁷ pps, run time 64 hours;

Clarion array – 11 clovers

Csl charged particle detectors: Ring 1 – 6 detectors 7° - 14° Ring 2 – 10 detectors 14° - 28° Ring 3 - 12 detectors 28° - 44°

<u>HyBall array</u>

TECHNISCHE

UNIVERSITÄT DARMSTADT

First MS observation with RIB

8

Volker Werner | Sr. Researcher TU Darmstadt, AG Pietralla | Adj. Prof. Yale | 2nd SPES Int'l. Workshop | 28.5. 2014

Configurational Isospin Polarization (CIP)

$$2_{sym}^{+} = a_1 \cdot 2_n^{+} + b_1 2_p^{+}$$

 $2_{ms}^{+} = a_2 \cdot 2_n^{+} - b_2 2_p^{+}$

protons and neutrons contribute about equally: good F-spin $|a_i| \approx |b_i|$

imbalance in proton and neutron contributions: broken F-spin $|a_i| \neq |b_i|$

need observable which is sensitive to p/n content: magnetic moment !

10

Volker Werner | Sr. Researcher TU Darmstadt, AG Pietralla | Adj. Prof. Yale | 2nd SPES Int'l. Workshop | 28.5. 2014

New CIP case predicted: 136Te

2+1 and 2+2 have significant E2 -> 1-phonon states Strong M1 between them -> 2+2 = 2+1,MS

QPM: A. Severyukhin *et al.*, submitted to PRC

New CIP case predicted: 136Te

	2+1 and Strong 2+1 net	+1 and 2+2 have significant E2 -> 1-phonon states Strong M1 between them -> 2+2 = 2+1,MS -> CoulEx +1 neutron dominated, 2+2 large proton amplitudes at SPES !							
	$\lambda_i^{\pi} = 2_i^+$	Energy (MeV) Expt. The	Structure	$B(E2; 0^+_{gs})$ (e ² fn Expt.	$a_{i} \rightarrow 2_{i}^{+})$ n ⁴) Theory	$B(E2; 2_i^+)$ (e ² fm) Expt.	$\rightarrow 2_1^+)$ (4^4) Theory	$B(M1; 2)$ (μ) Expt.	${}^+_i \rightarrow 2^+_1)$ ${}^2_N)$ Theory
¹³⁶ Te	2_1^+ 2_2^+	0.606 0.9 1.568 2.0	92 97% $[2_1^+]_{QRPA}$ 94% $[2_2^+]_{QRPA}$	1030±150	1120 740	20		1	0.51
	State	Energy (MeV)	$B(M1; 2_i^+ \to 2_1^+) (\mu_N^2)$	$B(E2; 0^+_{gs} \rightarrow (e^2 fm^4))$	$2_i^+) \{$	$n_1 l_1 j_1, n_2 l_2 j_2 \}$		Y	%
¹³⁶ Te	$[2_1^+]_{QRPA}$	$[2_1^+]_{QRPA}$ 1.05		1010		$\{2f_{7/2}, 2f_{7/2}\}_{1}$ $\{2d_{5/2}, 2d_{5/2}\}_{2}$ $\{1g_{7/2}, 1g_{7/2}\}_{2}$	ν = 1.32 π = 0.32 π = 0.30	0.14 0.13 0.12	$\frac{86}{4}$
	$[2_2^+]_{QRPA}$	2.20	0.44	920		$ \{ 2f_{7/2}, 2f_{7/2} \} $ $ \{ 2d_{5/2}, 2d_{5/2} \} $ $ \{ 1g_{7/2}, 1g_{7/2} \} $	ν -0.52 π 0.82 π 0.83	2 0.13 0.04 0.04	13 34 34

QPM: A. Severyukhin *et al.*, submitted to PRC

Plunger: Time-Differential Recoil-Into-Vacuum (TDRIV)

Volker Werner | Sr. Researcher TU Darmstadt, AG Pietralla | Adj. Prof. Yale | 2nd SPES Int'l. Workshop | 28.5. 2014

14

New Reaccelerated RIB Plunger Underway

Developed by Yale (VW) and Cologne, Si Disk to be purchased by TU Darmstadt

Will fit into GammaSphere, GRETINA, MiniBall, AGATA, GALILEO ... Will be able to couple to other auxiliaries like CHICO2, PhoSwitch Wall

New Reaccelerated RIB Plunger Underway

Developed by Yale (VW) and Cologne, Si Disk to be purchased by TU Darmstadt

Will fit into GammaSphere, GRETINA, MiniBall, AGATA, GALILEO ... Will be able to couple to other auxiliaries like CHICO2, PhoSwitch Wall

Conclusion

Identification of one-phonon 2+1, ms of radioactive nuclei *is* possible in Coulomb excitation on a light (carbon) target with beam energy ~85 % CB \Rightarrow 3.8 ÷ 4.5 MeV/u at ~10^6÷10^7 pps

⇒ <u>SPES offers optimum conditions</u>!

Pending first results – move to simultaneous CoulEx/Plunger

Beams of interest:

138Xe, 140Ba, 132Te, 136Te Later extend to: 90Sr

Experimental approach

Coulomb excitations in inverse kinematics on C target

predominantly one-step processes and clean γ -spectrum (no target excitations)

To identify excited 2+ states (beyond the 2+1) in vibrational nucleus (B(E2)~1Wu) with a 10% array for 2 weeks beam time we need 105pps. For complete spectroscopy 106-107 pps will be needed!

Feasible, but requires beam energy ~85% CB (3.5-4 MeV/n)

well within the capability of SPES