

Optical characterization and irradiation tests at ENEA Calliope lab

Stefania Baccaro, Alessia Cemmi, Salvatore Fiore

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT Research Centre Casaccia (Rome, Italy)

Belle II ECL meeting, Jan 27 2014

Dry box for optical (transmittance) measurements

A second black box hosting one crystal at a time is being constructed in Casaccia (A. Lucchi)

- dry air (or nitrogen, argon) flushing around the crystal
- Two large quartz windows and six couples of quartz windows on the sides allow for longitudinal and transverse transmittance measurements using the Lumen spectrophotometer
- ready for every Belle II crystal dimension

Two component epoxy resins:

EPOXY Technology – Data Sheet

<u>EPO-TEK 301-2FL</u>	Minimum Bond Line Cure Schedule:		Spectral transmission @ 23°C:
	80°C 23°C	3 hours 3 days	>97% @1000-1600nm >99% @400-1000nm
<u>EPO-TEK 305</u>	65°C 23°C	1 hour 24 hours	>91% @ 250nm >97% @ 300nm >98% @400-1600nm

Belle II ECL meeting, Dec 19 2013

1) teflon support (non-stick surface):

"smooth" teflon surface

"rough" teflon surface

...disadvantage: defects due to the teflon surface (grooves, scratchs)

samples prepared immediately after resin mixing and after 2 hours:

2) single-quartz support:

Optical characterization and irradiation parameters

... before and after irradiation... Transmittance curves Range: 200-800 nm UV-VIS spectrometer Lambda 950 (Perkin-Elmer)

PER LE NUOVE TECNOLOGIE, L'ENERGI

ELO SVILUPPO ECO

Optical characterization: epo-tek 305 resin under irradiation

Optical characterization: epo-tek 301 and 305, BC630, Dow corning 3145

	Thickness [μ]	%Transmittance @ 320 nm [a.u.]
Epo-tek 301	120	84.06
	470	69.64
Epo-tek 305	210	71.79
	730	38.89

	Thickness [µ]	%Transmittance @ 320 nm [a.u.]
BC630	100	86
	200	87
Dow Corning 3145	100	94
	210	75

Optical characterization and irradiation tests: conclusion

Conclusion:

- despite the %T "jump" around 320nm, epo-tek 301 seems to present best results than epo-tek 305:
 - higher gamma irradiation resistance
 - higher %T @320 nm
 - %T less dependent on the thickness
- epo-tek 301 behaviour similar to that of BC630 grease

...next steps...

- optimization of sample preparation (controlled thickness, 1mm)
- irradiation tests on BC630 grease, grease+resin and epo-tek 305 up to 13.2Gy absorbed doses.