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This work devoted to analysis of influence of 

spatial dispersion on a point charge imagination 

near a surface of a dielectric or a metal. 



The charge imagination sufficiently well describes the 
polarization field which occurs near a dielectric or 

metal  surface in the presence of external point charge. 
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Image charge potential

The external charge is found
in the point z=1, r=0. 
Minimum  of  the potential 
equal to –Z1k. 



Dielectric tube
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Two ways of calculation:

1. Free modes quantization and 
calculation of the Hamiltonian

2. Explicit solution to Maxwell’s 
equations with subsequent 

quantization with the usage of 
singularities of analytical expressions. 
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Result of  calculations



Equation Δ=0   gives us a possibility to calculate the frequencies of a free electric 
oscillations of a tube. In this calculation we consider the frequency ω as the 
independent variable and set    only after calculating the eigenfrequencies. 



Calculation of potential and forces
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Forces
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Contribution of different eigenexcitations. The 
integrand in the complex k-plane.



Space dispersion restrictions: 
l=[rxp]
lc=rpc

For Al pc=0.68



The radial force in the Al tube 
(a=4, b=6).
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Abstract. This paper devoted to analysis of influence of spatial dispersion on a point 

charge imagination near a surface of a dielectric or a metal.  

 

 

1. Introduction 

 The charge imagination sufficiently well describes the polarization field which occurs 

near a dielectric or metal  surface in the presence of external point charge. Usually, in classical 

electrodynamics (see, e.g. [1-6]), this problem is solved without taking into account the spatial 

dispersion of polarization properties of the solid near which surface the external point charge 

occurs.  In this paper we try to investigate which significant corrections should be made if the 

medium obey the spatial dispersion. This problem attains a new importance in connection to the 

channeling phenomena in a thin channels like nanotubes or thin capillaries and cylindrical holes 

in solids.  

 Consider the calculation of the interaction of a point charge with a uniform semi-infinite 

dielectric medium with a flat surface, based on the concept of the field of surface elementary 

excitations of the electric type (field of surface plasmons) . In this case, we go beyond the 

classical electrodynamics using partly quantum mechanical notions. Chose the dielectric function 

of a semi-infinite conducting medium with a plane boundary 0z  in a simplest form 
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where the spatial dispersion takes in that the wave length of the plasma oscillations assumes to 

be not less the minimal value cc k/2  . Here the maximal wave vector  ck  has the order of 

the Fermi momentum divided by the Plank constant.  The potential of the polarization field takes 

to be 
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The point charge  Z  is assumed to be placed on a distance b  in vacuum over the plane boundary 

on the  z-axis at  z > 0 . As it follows from (1), at the distances  122  ckrzx  we have 
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and therefore, at the great distances the polarization field approximately coincides with the field 

of a point image charge which displaced on the other side of the boundary plane and obeying the 
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negative sign. But at the small distances 1~ 

ckx   the 

image charge doesn’t point (in opposite to the external 

charge). It is distributed in the volume with the 

characteristic size  
1~ 

ckl .  In particular, the minimal 

potential energy of interaction between the external 

charge and the image charge isn’t infinity and has the 

value 
c

ZkU 
min

. In the Fig.1 the image potential is 

shown in coordinates  r and z  where for the illustration  

purposes the  coordinate r admitted to negative values. 

The external unit point charge is placed in the point 

0,1  rbz . Minimum of the image potential is 

   Fig.1.                               found in the point 0,  rbz .  In the neighborhood 

of the minimum the potential has a more complex behavior than it can be anticipated. In 

particular, its first derivatives in the minimum does not equal to zero. 

2. Dielectric tube 

 Consider now a case of a dielectric/metal tube. 

Some important electromagnetic properties of such a 

specimen was described in the work [5]. In this case 

(see the cross section in the fig.1) we assume the 

external point charge Z is moving with the constant 

velocity v  parallel to the tube’s axis at the distance 

ar 0  from the axis. We assume (see fig.2) that only in 

the area 2  the dielectric function is differ from unity, 

equal to   and take into account only the time 

dispersion. In the areas 1, 2, 3 we have different 

solutions to the electric displacement potential, which 

we write as a superposition of two samples of linear 

        Fig.2                  independent terms 
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Here the wave number  k   assumes to be non-negative. For us is important to get the all sample 

of independent solutions to the wave equation, in particular, for different signs of the 

longitudinal component of the wave vector  k. In the expression (3) this circumstance is taken 

into account explicitly. As we know, the functions  )(rR km

  obey the Bessel equation 
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On the boundaries  bar ,  the continuity of radial derivatives of the potential (3) should be 

fulfilled and at the same time  the continuity of  quantities  

/

km
R  should be ensured.  

 In following we use the approach which divide all the electromagnetic fields on two 

independent  classes – longitudinal and vortex. This division is useful in the vacuum 

electrodynamics (as clearly demonstrated in the book [7]), and may be just more important in the 
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condensed medium. It was used at calculations of the stopping power for the projectile moving 

in the dielectric cylinder [8] and based on the two series of Maxwell’s equations, for the potential 

fields, 
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and for the vortex fields 
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In framework of this decomposition in this paper we would like find an exact solution to the 

potential fields. 

 Assume the point charge is found inside the tube on a distance  )0(
00
arr   from the 

axis, 
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- are the current coordinates of the moving point 

charge Z . After the Fourier transformation we have 
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Equation (6) presumes the definition of the particle’s trajectory to the all times and only for the 

motion with a constant velocity v


 (in our case directed along the tube’s axis, in a case of the 

appropriate choice of the coordinate system origin, when )()())((
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is the partial solution to the inhomogeneous equation (7).  The condition of the regularity in the 

origin and 0)0()( ext

km
R


 enforced us to set   0D . Taking into account also the conditions on 

the boundaries  bar ,  we get the polarization field, which could be calculated by subtracting 

the field in the vacuum, at 1 . This quantity been calculated within the region between the 

charge and the inner boundary of the tube takes the form: 
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In this expression we have used that due to the translation symmetry of the tube the dependence 

of the dielectric function on the longitudinal component of the wave vector could be easily taken 

into calculations. Because the dielectric function involves as in the denominator of the integrand 

in (9) as well in the nominator, in the same power, the singularities of the reciprocal dielectric 

function does not give the singularities of the integrand. Therefore, within the considered case 

the volume plasmons are not arise in course of the charge motion. 

Equations 0

m
  gives us a possibility to calculate the frequencies of a free electric 

oscillations of a tube. In this calculation we consider the 

frequency ω as the independent variable and set  kv  only 

after calculating the eigenfrequencies. These oscillations could 

exist in the tube at the absence of the external electric charges. 

But the knowing the frequencies of the elementary oscillations 

don’t gives us the knowing the intensities of the free oscillations 

generating by the external charges. Within the pure quantum-

mechanical approach one need firstly to proceed the procedure 

of quantization the free fields and then to get the quantum-

mechanical representation of potentials of free fields. For this 

procedure we need the correct estimation of the energy of 

electric field in dispersed medium (this one is famous only for 

homogeneous media). With the help of this result one will be 

  Fig.3        able to write the Hamiltonian of interaction between free fields 

and the external charges. In this article we are following to another approach based on the purely 
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classical solution of the problem and only then go to the quantum-mechanical treatment of the 

result. In simplest cases the both considerations gave the same result but it is not to be ever. In 

particular, for the here considering case this approach isn’t 

applied.  

 For the simple one-mode model for the dielectric 

function (1) we get two branches of the surface plasmons in the 

opposite to the homogeneous cylinder case. The dielectric 

function is set to be the simple one-mode model with the 

frequency of free plasma oscillations 5794.0/3 3

0


s
r . 

Each branch apparently relates to the corresponded surface of 

the tube (inner or outer). In the Fig.3 the crossing of two 

branches of surface fields with the straight line kv  at 1v  

 Fig.4        or Al tube (a=4, b=6) at m=1 is depicted.  In the Fig. 4. the 

function )(1 k
  at the same conditios   is presented.  The derivatives   

a
kkmam

k
k

k



 )()(  and 

the roots for different m should be calculated in a special procedure.  As we see, the left 

derivatives are positive but the right - negative. This difference in the signs arises apparently in 

consequence of opposite charging of two surfaces due to the polarization. At increasing m the  

distance between the left and right roots diminishes but allways to be nonzero.  

   The same two surface-mode result was obtained in a series of papers (see, e.g., [1-6 ]). 

Our result that the volume eigenfrequencies are not arisen in the case of cylindrical tube, when 

the external charge moves in vacuum near the dielectric, apparently, concerns with the analogous 

conclusion in the work [5]. 

 

3. Calculation of potential and forces 

               

 The expression (8) turns to zero into vacuum. With the help of taking the derivatives of 

the potential we could calculate all components of polarization forces applying to the projectile. 

The singularities in the integrand give important contributions to the measured quantities. The 

main singularities are roots of the denominator  

m
 .  This roots have to be calculated separately 

in a special calculation procedure.  The quantities 

m
 at a specific  m could be considered as 

dielectric functions of the tube. 

 Represent  the function )(/)()( )( kekgkrI
m

vtzik

ьm

    which is analytic along the real 

half-axis  k0  , tends to zero at k , in a form of the Laurent  series within the half-

axis. The crawl rule poles defined by the causality  principal (the rule Kramers-Kronig relations).    

We get: 
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where  0)( 

am
k  and the symbol   denotes the principal part of the integral.   Applying it to 

the potential, we get 
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After summing over m with different signs the potential takes the form 
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The total main part: 
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This integral converges as at the upper limit as well as in zero. At r=0 only m=0 contribution 

does not vanish. Emphasize  the longitudinal polarization force (stopping) is well defined only 

by the contribution from the poles: 
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At the same time, the transversal force contains the contributions only from the main part of the 

integral,   
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4. Effect of the spatial dispersion on the forces in a tube 

At the presence of a spatial dispersion, when the Fourier components of the dielectric 

function ),( kk


 depends on the all components of the wave vector, the expressions should be 

changed. In this case the action of the reciprocal dielectric operator on the field functions gives 
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Here with a tilde are denoted the Fourier transformations of the functions. The conditions on the 

boundaries bar ,  give the system of four linear equations for four constants  A,B,C,F: 
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  (12) 

 

In course of the solution to this equations we should set kv  in all expressions . The zeros of 

the determinant of this system give the eigenfrequencies of electric oscillations of a tube. The 

corresponding equation is the integral equation and its solutions have the form  ),( kk
s 

 . 

Here the index s represents a number of the corresponding branch of the solutions. 

 Within a simplest dispersion model (1) we are be able to take into account the cut-off in 

the wave vector space in cylindrical coordinates.  In consequence of the angular momentum is 

expressed as prl


  then the cut-off in the momentum space leads to the cut-off in the angular 

momentum space at cc prl  and therefore to the critical wave vector ck correspond the critical 

angular  momentum  cc krm   (here the  square brackets denote the integer part of the 

number). This momentum depends on the radius in analogous way as the new introduced 

“dielectric functions” depend on the radius. The momenta which exceed the critical value, should 

be excluded from calculations of the polarization potential in the inner part of the tube. In 

consequence of this result at the estimation of the image of the point charge in the inner part of 

the tube the terms with cmm   should be eliminated from consideration. For example, if the 
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inner radius of a tube less than  1 cka then in the image potential should be taken into account 

only one symmetrical term which corresponds to 0m . 

 As an example, we perform the 

calculation of the transversal force for the point 

charge moving parallel to axis within the 

Aluminum tube (a=4, b=6). In this case the 

inner radius of a tube is equal to 4 but the cut-

off momentum of plasmons calculated for Al 

in the Lindhard approach is equal to 0.68 (in 

atomic units). Then the maximal m for the 

plasmon excitations in this case is equal 

    .272.2 
cc
kam  In the Fig.5 the 

contributions of three partial waves at 

2,1,0m  for the radial force acting on a point 

charge moving parallel to the tube’s axis with 

    Fig.5                 the velocity  1v  are depicted. 

 

 

 

  

Appendix:  
 

The expression   
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could be considered as proportional to the propagator of a quasiparticle, which associates with 

the elementary electric excitation of the tube  
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which expressed in the explicit form as a Fourier representation of the propagator 
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kk
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where the index   denotes a type of the quasi-particle,  k - is the longitudinal momentum.  

Within the theory considered this propagator  appear  in the point vkkv
aa

  ,  and after 

multiplying on the velocity returns to (A1). In this approach we get the new form of quantization 

of the electric excitations of the tube. 
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