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Introduction

• Deterministic and Monte Carlo techniques compete to 

provide the best description of transport problems.

• However, many times they demonstrate to be 

complementary.

• This talk offers some examples from our experience in 

photon transport which illustrate the close cooperation 

between these two approaches to treat properly the physics 

of the collisions.

• The following examples show recent refinement in the 

description of the interactions in MCSHAPE but also useful 

for deterministic codes.



CHARACTERISTICS OF THE CODE 

MCSHAPE

• Photon transport

• Arbitrary polarization state of the source

• Multi-layer multi-component homogeneous targets

• Monochromatic or polychromatic source

• State of art description of the photon interactions in 
the x-ray regime: Rayleigh and Compton scattering, 
and photoelectric ionization followed by radiative 
relaxation

• Compton profile (for Compton scattering)

• Full description of the polarization state

• N-collisions

• 1D and 3D versions



PHOTON DIFFUSION IS DESCRIBED BY A 

“VECTOR” TRANSPORT EQUATION 

(THE 1-D EQUATION IS SHOWN HERE)
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VECTOR TRANSPORT EQUATION 

(CONT.)

where

= kernel matrix in the meridian plane of    

reference

= scattering matrix in the scattering plane of 

reference
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IMPORTANT PROPERTIES OF THE 

“VECTOR” TRANSPORT EQUATION

• Describes the evolution of the full 

polarization state (not only the intensity 

of the beam)

• Is linear (for the Stokes representation)

• Requires the simultaneous solution of 

the whole set of transport equations

• Cannot be transformed in a scalar 

equation !! (due to the coupling in the 

scattering term)



WHY POLARIZATION?

Polarization state
wave nature of 

photons

By considering polarization we improve the model 

of photon diffusion

a good approximation in many cases, but not for 

phenomena that are influenced by their wave 

properties 



TWO RELEVANT ASPECTS

• A collision always changes the 
polarization state

• The angular distribution for 
scattered unpolarized and 
polarized photons is very 
different
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Unbiased Monte Carlo simulation 

of the Compton Profile

This example shows how a deterministic calculation has 

been used to correct a biased Monte Carlo algorithm widely 

adopted to simulate the Compton profile. 

The proper calculation is included in MCSHAPE



Compton profile

• It is the broadening of the Compton peak

• It is produced by the momentum distribution of 
the electrons in the atom

• it can be measured quite precisely in 
synchrotron facilities 



Biased Algorithm
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The bias was responsible for:

• the creation of a false peak in 

correspondence with the low 

energy tail of the profile

• a wrong Compton profile at low 

energies

It was discovered a biased 

behaviour in Compton profile MC 

simulation (at low energies) when 

using the standard algorithm by 

Namito1 (used by both, EGS and 

MCNP)

1 Y.Namito, S.Ban, H.Hirayama,NIM A 349 (1994) 489.



Reason for the bias

Wrong sampling of the atomic sub-shells:

sub-shells were assumed complete

i.e. having    electrons in
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Unbiased sampling

Correct sampling of the atomic sub-shells:

sub-shells now are assumed incomplete

i.e. having    electrons 
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Results of the unbiased algorithm
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The deterministic code 

was essential to 

discover the wrong 

behaviour of the biased 

algorithm.
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Deterministic vs Monte Carlo codes for 

transport calculations of line width effects

This example shows how a deterministic calculation has 

been used to compute the multiple scattering of Lorentzian 

characteristic lines



Condition to fulfill in order to produce 

photoelectric effect

0E

Mechanism for producing 

XRF lines



IRRMA  8

The width of the atomic levels is responsible for 

the natural width of the lines

The widths of the atomic levels are the 

recommended values in Campbell and Papp, At. 

Data and Nucl. Data Tables 77, 1–56 (2001) 

 1

 2



Lorentzian shape of the line

sometimes is used the

Half Width at Half Maximum (HWHM)
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K

Emission of a Lorentzian K-line

K edge

K line 

(close to the edge)

E0



Transport kernel for a Lorentzian line 

(wavelength regime)
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In MC the energy  of the characteristic photon is randomly sampled at 

every interaction using a Lorentzian distribution centered at E0. 

One interesting effect appears when the Lorentzian tail crosses the 

edge, i.e. the energy of the emitted photon is high enough to produce 

another vacancy and, therefore, a self-enhancement effect. 

Since the high energy tail has always a very low probability, this case 

requires refined variance reduction techniques in order to get significant 

results.

The slow asymptotic decrease of the Lorentzian distribution introduces a 

further complication to describe multiple scattering with reasonable 

statistics.

Therefore, we propose to use instead a deterministic method based on 

the wavelength (energy) discretization of the Lorentzian distribution.

MC vs Deterministic description of a 

Lorentzian line
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Discretization of the Lorentzian distribution 

(wavelength regime)
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Discretized kernel for the Lorentzian line 

(wavelength regime)
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The  secondary intensity of the line centered at the peak wavelength               for an 

infinite thickness specimen  is computed within an infinitely large  acquisition window.

Secondary XRF intensity of a Lorentzian line
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Example of almost symmetric Lorentzian lines

Sometimes the asymmetry is small …



Secondary Lorentzian contributions can be very asymmetric

Sometime the asymmetry is large …
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Electron contributions to 

photon transport

• The aim is to evaluate the contribution due to electrons to be included in 
photon transport codes without solving the complete coupled problem.

• The code PENELOPE (coupled electron-photon Monte Carlo) was used
to study the effect of secondary electrons into the photon transport.

• The ad-hoc code KERNEL was developed to simulate a forced first 
collision at the origin of coordinates. We considered a point source of 
monochromatic photons. 

• The physics of the interaction was described using the PENELOPE 
subroutine library. 

• All the secondary electrons were followed along their multiple-scattering
until their energy become lower of a predefinite threshold value. 

• All photons produced by the electrons at every stage were accumulated.
• Polarization was not considered at this stage.



Prevailing photon interactions 

in the X-ray regime
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Electron-photon coupling

 

SECONDARY 
ELECTRON 
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Description of the KERNEL code

YES

Primary photon Nh= Nh+1
E=E0, r=(X, Y, Z)=0, d=(U, V, W)=(0,0,1)

First collision

Particles in secondary stack?

Electrons?

Simulation of slowing-down
until E<Eabs

Bremsstrahlung or 
relaxation?

Score of the distributions

Nh < Nmax

END

NO

NO

YES

NO

SI

YES

NO



Types of electron contribution 

to photon transport

 Inner shell impact ionization: modifies the 

intensity of the characteristic lines

Bremsstrahlung: contributes a continuous 

distribution



Inner shell impact ionization

This example shows how a MC simulation of electron-

photon transport (SLOW) has been used to create an 

approximated kernel (FAST) to be used in photon transport 

codes.



Polar angular distribution
Inner-shell impact ionization

Primary photon source is 100 

keV.

Blue lines denote computed 

values, red symbols are error 

bars. 

The emission is isotropic.



Spatial distribution (1)
Electron range vs photon MFP

Parameter 

as a function of energy. 

Bethe range of electrons

Mean free-path of photons

Value ranges keep always small 

(order of 10-1).



Spatial distribution (2)
Effective electron range

Bethe range

Au

Effective range   ~ R/4



Photon emission
Inner shell impact ionization

Primary photon source is 100 keV.

Blue lines denote computed values, 

red symbols are error bars. 

X-axis is r/R

All distributions keep below R/3

Radial distribution



Photon emission
Inner shell impact ionization

Axial distribution

Primary photon source is 100 keV.

Blue lines denote computed values, 

red symbols are error bars. 

X-axis is z/R

All distributions keep below R/3



The correction as a 

function of energy

• Calculations were performed for all the lines of the elements Z=11-92 in 
the energy range 1-150 keV.

• Since the electrons loose their energy more efficiently in the low energy 
range, the computed contribution is higher for low energy lines.

• To compute the correction for a generic energy the whole interval was 
divided into 5 energy regions. The best fit of the energy correction at 
each energy interval was computed using 4 coefficients. 



Electron correction 

on K-lines

Al Kα1 (1.486 keV)
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Electron correction 

on L-lines

As Lα1 (1.282 keV)
Medium Z (30-50)

Zn - Sn
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Electron correction 

on M-lines

High Z (62-92)

Sm - U
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Kernel correction due to inner 

shell impact ionization
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Corrected kernel comprising 

electron contributions
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Detailed calculation of inner shell 

impact ionization



Inner shell impact ionization 

correction is energy localized

(1) To study ISII is 

necessary to measure

at the proper energy

(2) The localization 

energy is element and 

line dependent



Inner shell impact ionization 

correction for K-lines



Inner shell impact ionization 

correction for L-lines



Types of electron contribution 

to photon transport

 Inner shell impact ionization: modifies the 

intensity of the characteristic lines

Bremsstrahlung: contributes a continuous 

distribution



Obtained Result

Spatial distribution

The correction roughly occurs at the same place of the photon collision

Angular distribution

The correction is isotropic

Energy distribution

The correction depends on energy (wavelength)

The Bremsstrahlung correction was studied in terms of:



Bremsstrahlung energy distribution

Example for a Fe target and 60 keV source energy

The Bremsstrahlung contribution was computed for all the different 

photon interactions which generate secondary electrons



Bremsstrahlung data library

the Bremsstrahlung database 

includes the distributions for 

energies before and after the 

binding energy of each shell

It was created a data library comprising the energy distribution of the 

correction for selected source energy in the range 1-150 keV for all the 

elements with atomic numbers Z=1-92 

Example of Bremsstrahlung distributions for a Fe target

To avoid the discontinuities at 

the absorption edges



Bremsstrahlung Kernel
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For a generic source energy E’ the contribution is obtained by 
interpolating the created data library using an ad-hoc 2D interpolation 

scheme[1]:
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[1] J.E. Fernandez, V. Scot, M. Badiali, A. Giudetti, Multiple scattering corrections for density profile unfolding from Compton signals in 
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Example of Bremsstrahlung library database interpolation for 

a Fe target with a 55 keV source energy



Mixture of Compounds

For composite materials with several species of atoms 

it is assumed that the overall contribution is obtained 

as a linear overlapping of the single elements 

corrections. 
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Bremsstrahlung Simulation Results

Comparison 

between the 

PENELOPE 

simulation and the 

first order intensity of 

bremsstrahlung 

computed using the 

data library. Sample 

is a Cu thin target. 

The source is a 

synchrotron beam at 

40 keV. It is apparent 

the excellent 

agreement for 

bremsstrahlung. 

Speed improvement 

is 10^5



Spectrum Simulation Results (a)

Comparison 

between 

PENELOPE and 

MCSHAPE 

simulations (only 

transport) computed 

using the data library 

and measurements. 

MCSHAPE not 

includes 

bremsstrahlung. 

Sample is a Cu thin 

target. The source is 

a synchrotron beam 

at 40 keV. Speed 

improvement is 10^5



Spectrum Simulation Results (b)

Comparison 

between MCSHAPE 

simulations 

computed using the 

data library and 

measurements. 

MCSHAPE includes 

bremsstrahlung and 

detector response. 

Sample is a Cu thin 

target. The source is 

a synchrotron beam 

at 40 keV.



Spectrum Simulation Results (c)

Comparison 

between MCSHAPE 

simulations 

computed using the 

data library and 

measurements. 

MCSHAPE includes 

bremsstrahlung, 

detector response 

and resolution. 

Sample is a Cu thin 

target. The source is 

a synchrotron beam 

at 40 keV. 



Summary

• Introduction

• Unbiased Monte Carlo simulation of the 

Compton Profile

• Deterministic vs Monte Carlo codes for 

transport calculations of line width effects

• Electron contributions to photon transport

• Conclusions



Conclusions

Deterministic and Monte Carlo techniques demonstrate to be complementary to 

provide the best description of transport problems.

We have shown three different cases in photon transport to illustrate the 

symbiosis of MC and Deterministic approaches:

1) Deterministic calculations were essential to discover the wrong behaviour of 

a biased algorithm used to simulate the Compton profile in largely diffused 

MC codes.

2) Deterministic calculations provide a better framework to describe the 

influence of the Lorentzian breath on multiple scattering contributions to XRF 

lines.

3) Coupled photon-electron MC calculations were essential to obtain a simple 

correction of the photon kernel to include the effect of inner shell impact 

ionization and bremsstrahlung from electrons.

4) To obtain a good description of measurement it is necessary to include the 

detector response function (MCSHAPE in mode response) and a proper 

description of the resolution (postprocessing code RESOLUTION).
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