Ultra-Short Pulse Reconstruction Software in High Power Laser System

Mario Galletti Marco Galimberti Danilo Giulietti

Summary

- · Laser Diagnostic: Grenouille
- Software
- Experimental Set-up and Data
- Data processing
- Conclusion

GRating-Eliminated No-nonsense Observation of Ultrafast Incident Laser Light E-fields

Like FROG, GRENOUILLE is a spectrally resolved autocorrelation.

GRENOUILLE set-up is simpler than FROG one.

Ultra-Short Pulse Reconstruction Software 1/2

The algorithm, on which the software is based, consists of 2 main parts:

- **Experimental image capture**, image that will be compared with (involves determining the χ^2 "distance") calculated one, the latter produced by a pulse similar to the experimental one;
 - An iterative loop (includes a minimization algorithm) that proposes to vary the arbitrary initial pulse for the χ^2 decreases, succeeding so to obtain a reconstructed pulse as similar as possible to the real one.

Ultra-Short Pulse Reconstruction Software 2/2

The iterative loop consists in:

- Choice of the field E(t) similar to the experimental one;
- **Sampling** of the field, E_i ;
- *Calculation* of the GRENOUILLE signal, of the 'distance' χ^2 , of the χ^2 gradient with respect to E_i and of χ^2 minimum in the gradient direction;
- **Updating** of the new E_i with the minimum position.

The steps are repeated until reaching conditions for which the reconstructed pulse does not vary significantly.

Experimental Set-up

The laser beam (60 cm, mJ, 2 Hz, 1053 nm), leaving the Vulcan TAP compressor, is:

- Focused by an off-axis parabola (f=180 cm);
- Re-collimated by a lens (f=34 mm) an reduced to a D=1cm;
- Propagated outside the vacuum chamber thanks to a pair of lenses;
- Sent inside the diagnostics (AC,GR) thanks to reflective mirrors;

Experimental AC Data

In the CPA, adjusting the stretching factor, simply by moving the grating, can compensate the different dispersion in order to obtain shorter pulses.

AC_13 AC_14

AC Data processing

Horizontal lineout of the experimental images:

AC_14

Found FWHM of the pulse thanks to

$$1.54 \Delta \tau_p^{FWHM}$$

$$\Delta \tau_{_A}^{FWHM}$$

GRENOUILLE Data processing

Before processing, the experimental images have been:

- Subtracted from the background;
- Re-scaled and Centered in the maximum of I(t).

GRENOUILLE Data processing

The reconstructed images are:

GR_25 GR_26

- The reconstruction is not perfect (experimental images have more structures);
- Experimental image not symmetric (chromatic aberrations).

GRENOUILLE Data processing

Data processing

The results of the measurement:

Images	Stretcher position (mm)	FWHM AC (ps)	FWHM AC pulse (ps)	FWHM GR pulse (ps)
GR_25	17.5			0.717
GR_26	17.5			1.0038
AC_14	17.5	1.0836	0.7662	
AC_13	17.5	1.3674	1.0071	

The last two columns show the excellent agreement between the Autocorrelation and GRENOUILLE measurement.

Conclusion

- In this experimental research was analyzed for the first time, in Target Area Petawatt of Vulcan, the laser pulse with a *different technique* from the AC.
- The results are compatible with the standard technique of measurement (AC) and give us a convincing pulse shape.
- The analysis will be extended to data taken at full power to try to improve the characterization of laser pulses of such powers (1PW).

