WD-XRS Imaging with Polycapillary Optics

Osaka City Univercity, Osaka Japan: **Kouichi Tsuji, Yuuki Takimoto, Masaki Yamanashi**

in cooperation with Rigaku Co.

XRF imaging

Full Field mode

2D detector allows a fast imaging.

Elemental analysis (imaging) needs energy analysis of XRF.

WD spectrometer

Conventional WD-XRF

Bragg's law: 2d $\sin\theta = n\lambda$

Concept of WD-XRF imaging spectrometer

Previous results were reported in

K. Tsuji, et al, Anal. Chem., 83 (2011) 6389-6394.

T. Ohmori, et al., Spectrochim. Acta, Part B, 83-84 (2013) 56-60.

WD-XRF Imaging Spectrometer based on Rigaku-RIX1000

WD-XRF Imaging Spectrometer based on Rigaku-RIX1000

Sample – crystal : 218 mm

Crystal – PILATUS: 203 mm

Straight polycapillary optics (by XOS)

Angular filter

Outer Diameter	Channel Diameter
Enclosure Diameter	
	Enclosure Length

Straight polycapillary	
Outer Diameter	10.0 mm
Channel Diameter	10.0 μm
Enclosure Diameter	16.0 mm
Enclosure Length	105 mm
Open Area	73 %
X-ray transmission efficiency	53 %

Imaging detector (PILATUS, Rigaku) Sensor : Silicon diode array (320 µm) Pixel size : 172 x 172 μm² Format : 487 x 195 = 94,965 pixels Area : 83.8 x 33.5 mm² Quantum efficiency : 3 keV : 80%, 8 keV : 99% 15 keV : 55 % Readout time : 2.7 ms Cooling : Air-cooled SiO Power consumption 15 W Dimension 275 x 146 x 85 mm Weight 4 kg

PILATUS: \underline{Pixel} Apparatus for the \underline{SL}_8 S

Elemental image and Exposure time

Ni film (50 μ m in thickness)

Cu plate

W target (60 kV, 50 mA)

Diffraction angles were adjusted to the corresponding angles of Ni K α and Cu K α .

Elemental image and Diffraction angle

Elemental image was obtained, as diffraction angle was changed.

W target (60 kV, 50 mA)

Exposure time: 1 sec.

47.5° 48.0° 48.5° 48.645° (Ni K α)

Energy resolution

11

Energy resolution in WDS and EDS

WD-XRF images of Ba-Ti sample

BaSO₄ powder was filled into the holes made on Ti plate. Ti K α (4.51 keV) is very close to Ba L α (4.47 keV). It is difficult to distinguish two lines by conventional EDS.

Exposure time:

30 s

100 s

Ti Kα 86.110°

W target 40 kV , 75 mA

Ba Lα 87.135°

40 eV

Elemental image of 2 Euro coin

Elemental image of electronic circuit card

W target, 60 kV , 50 mA 20 : 14.030 °

Solder _

Sn Kα / 1 s

Sn Kα / <mark>10 s</mark>

Sn Kα / <mark>100 s</mark>

Elemental image of high energy x-rays needed long exposure time. Sn Ka (25.19 keV)

Elemental image of electronic circuit card

W target, 60 kV , 50 mA

Element / Exposure time (sec.)

Cu Kα / <mark>1 s</mark> (2θ : 45.01°)

Br Kα / <mark>1 s</mark> (2θ:29.95 °)

Sn Kα / <mark>10 s</mark> (2θ:14.03 °)

Solder

Pb Lα / <mark>10 s</mark> (2θ : 33.92 °

Summary

- WDXRF imaging spectrometer was developed.
- A fast elemental imaging (less than 1 s) was possible by using a highly sensitive imaging detector.
- Energy resolution was 77 eV at Ni K α .
- Ti Kα and Ba Lα images were separately obtained (difference: 40 eV)
- ARF imaging of Euro coin and electronic circuit was demonstrated.
- We appreciate Prof. Y. C. Sasaki (Univ. of Tokyo) for his kind offer to use Pilatus detector.
- This work was supported by JSPS Grant-in-Aid for Scientific Research (B).

Evaluation of spatial resolution

Scanning Micro-XRF (Horiba, XGT2500)

- X-ray: Rh, 50kV, 1mA
- Micro beam of XGT: 100 μm
- Total mapping time: 3600 s
- Pixel : 256 × 256
- Area: 5.12mm × 5.12 mm

Comparison (ED & WD imaging)

10 s

3600 s

Elemental image of 2 Euro coin

W target, 40 kV, 75 mA, exposure time: 100 s

Calibration curve of Ni in steel sample

W target, 50 kV, 60 mA, 100 s

Averaged intensity per sec. per pixel was plotted.