6th International Conference - Channeling 2014

TeV/m Nano-Accelerator

Current Status of CNT-Channeling Acceleration Experiment

Northern Illinois

University

<u>Y. M. Shin^{1,2}</u>, A. Green¹, R. Kreml², A. H. Lumpkin², J. C. Thangaraj², R. M. Thurman-Keup², and V. Shiltsev² <u>Thanks to X. Zhu, D. Broemmelsiek, D. Crawford, D. Mihalcea, D. Still, K. Carlson, J. Santucci, J. Ruan, E. Harms, P. R. G. Piot</u>

> ¹Northern Illinois Center for Accelerator and Detector Development (NICADD), Department of Physics, Northern Illinois University

> > ²Fermi National Accelerator Laboratory (FNAL)

11:30 am – 12:00 pm, S.4.2: Charged Beam Shaping, Wednesday, October 08, 2014

Content

- HEP Colliders and HG Accelerators for Energy Frontier
- Wakefield Acceleration in a Ultra-Dense Plasma
- Channeling Acceleration ightarrow HG Acceleration and Continuous Focusing
- CNTs for Channeling Acceleration
- Proof of Principle Experiment @ Fermilab ASTA
 - Test Beamline Configuration with Diagnostic Apparatuses
 - Micro-Bucher: Pre-Modulated Beam with Micro-Bunches
 - Beam-Driven Wakefield Excitation \rightarrow Self-Acceleration
 - Full Scale Assessment with Beam Parameters
 - Prospective Schedule for POP Experiment
- Conclusion and Future Plan
- Multi-Institutional Collaboration: Positron Crystal Channeling Acceleration Expt.

Advance of Accelerator Technology in a Century

1st cyclotron, ~1930 Ernest O. Lawrence 11-cm diameter 1.1 MeV protons

Large Hadron Collider (LHC), 2008, 9-km diameter 7 TeV protons

after ~80 years ~10⁷ x more energy ~10⁵ x larger

V. Shiltsev, Physics-Uspekhi, 2012

Foreseeing Prospective Budget and Accelerator R&D of HEP Colliders

Cate- gory	Cost, billions of dollars	Facility
Ι	≤ 0.3	NICA, ENC
II	0.3 - 1	Super-B factories, $c-\tau$ factory, eRHIC, ELIC
III	1 - 3	Higg factory, HL-LHC
IV	3 - 10	HE-LHC, LHeC, MC, Higgs factory–ILC
V	10 - 30	ILC, CLIC

V. D. Shiltsev, Physics - Uspekhi 55 (10) 965 - 976 (2012)

- " <u>There are profound questions to answer in particle physics, and recent discoveries</u> reconfirm the value of continued investments. Going much further, however, requires changing the capability-cost curve of accelerators, which can only happen with an aggressive, sustained, and imaginative R&D program. A primary goal, therefore, is the ability the future-generation accelerators at dramatically low cost."
 - P5 Report (Scenario-C)

Novel High Gradient Accelerator Technology

Paradigm Shift: Crystal Acceleration

Gas-State Plasma

$10^{16} - 10^{18} \text{cm}^{-3} \rightarrow 10 \sim 100 \text{ GeV/m}$

Nature 445, 741-744 (2007)

Energy Doubling: ~ 52 GV/m (@ 42 GeV)

Solid-State Plasma

(Conduction Electrons)

 $E_0 = \frac{m_e c \omega_p}{e} \approx 100 [\frac{GeV}{m}] \cdot \sqrt{n_0 [10^{18} cm^{-3}]}$

10²⁰ – 10²³ cm⁻³ → 1 ~ 30 TeV/m

- [1] P. Chen and R. J. Noble, AIP Conf. Proc. 156, 222 1987; also SLACPUB-4042 1986.
- [2] R. A. Carrigan and J. Ellison Plenum, New York, 1987, p. 517; also NATO ASI Ser., Ser. B 165, 517 1987; SLAC-PUB-4187 1987.
- [3] P. Chen, Z. Huang, and R. D. Ruth, AIP Conf. Proc. **356**, 331 1996; also SLAC-PUB-95-6814 1995.
- [4] P. Chen and R. J. Noble, AIP Conf. Proc. 396, 95 1997; also FERMILAB-CONF-97-097 1997; SLAC-PUB-7673 1997.
- [5] P. Chen and R. J. Noble, AIP Conf. Proc. 398, 273 1997; also SLACPUB-7402 1997; FERMILAB-CONF-96-441 1997.
- [6] D. S. Gemmell, Rev. Mod. Phys. 46, 129 1974.
- [7] T. Tajima and M. Cavenago, Phys. Rev. Lett. 59, 1440 1987.

Crystal Accelerators

$$\Delta E_{\text{max}} = \left(\frac{M_b}{M_p}\right)^2 (\Lambda G)^{1/2} \left(\sqrt{\frac{G}{z^3 \times 100[GV/cm]}}\right) \cdot 10^5 [TeV]^*$$

 $(M_b and M_p are the mass of the beam particle and mass of the proton respectively, \Lambda is the de-channeling length per unit of energy, G is the accelerating gradient, and z is the charge of the beam particle)$

- 0.3 TeV for electrons/positrons,
- 10⁴ TeV for muons,
- 10⁶ TeV for protons

*P. Chen and R.J. Noble, in: Relativistic Channeling, eds. R.A. Carrigan, Jr and J.A. Ellison (Plenum, New York, 1987) p. 517.

	Dielectric based	Plasma based	Crystal channeling
Accelerating media	micro-structures	ionized plasma	solid crystals
Energy source: option 1	optical laser	<i>e</i> ⁻ bunch	x-ray laser
option 2	<i>e</i> ⁻bunch	optical laser	particle beam
Preferred particles	any stable	e ⁻ , μ	μ⁺, p⁺ (e+, e-)
Max acc gradient	1-3 GV/m	30-100 GV/m	0.1-10 TV/m
c.m. energy in 10 km	3-10 TeV	3-50 TeV	10 ³ -10 ⁵ TeV
# stages/10 km: option 1	10 ⁵ - 10 ⁶	~100	~ 1
option 2	$10^4 - 10^5$	10 ³ - 10 ⁴	A

- V. Shiltsev, Physics-Uspekhi (2012)

- F. Zimmermann, "The future of highest energy accelerators", CERN, Geneva, Switzerland

Beam-Driven Acceleration in Dense Plasma (Solid-State Level)

Crystal Channeling Acceleration: Wakefield and Diffraction

 \rightarrow P. Chen and R. J. Noble, AIP Conf. Proc. 156, 222 1987

Driving Source: Beam, Laser

Particle Species: e+, e-, μ +, μ -, p+

Diffraction Acceleration

 \rightarrow T. Tajima and M. Cavenago, Phys. Rev. Lett. 59, 1440 1987

Driving Source: X-Ray Laser

Particle Species: μ +, μ -, p+

Channeling Acceleration in Carbon Nanotubes (CNTs)

CNT vs Crystal

- (1) Readily controllable channel size (up to micron). The larger channel can
 - \rightarrow decrease de-channeling rates
 - \rightarrow increase acceptance
 - → mitigate power requirement of driving sources
- (2) Thermally and mechanically stronger than crystals, steels, and even diamonds (sp₂ bond > sp₃ bond)

→ Higher durability in extremely intense channeling radiation/ acceleration

(3) Single-mode interaction (Stable Acceleration)

→ Zoran Miskovic, "Prospects of on channeling through carbon nanotubes", REM talk

Effective Plasma Parameters of CNT-Channel

and Luminosity in the Next Century", SLAC-PUB-7402 (1996)

phase velocity of self-modulated beam-driven plasma waves", arXiv:1108.1564 (2011)

Beam-Driven Acceleration in a Hollow Nano-Channel (CNT)

(a) maximum acceleration gradient and (b) transformer ratio versus bunch charge distribution normalized by bunch charge density with various tunnel radii ($r = 0.2 - 0.6\lambda_p$)

Proof-Of-Concept Experiment: Self-Acceleration*

^{*[1]} P. Chen. D. B. Cline, and W. E. Gabella, SLAC-PUB-6020

[2] G. Xia, C. Welsch, et. al., "A plasma wakefield acceleration experiment using CLARA beam", Nuclear Instruments and Methods in Physics Research A 740 (2014)

Test Facility: ASTA @ Fermilab

Advanced Superconducting Test Accelerator (ASTA) Facility @ Fermilab

Construction of ASTA began in 2006 as part of ILC/SRF R&D and later American Recovery and Reinvestment Act (ARRA)
Cryomodule

Channeling Acceleration with Micro-Bunch (or Modulated) Driver

• Micro-Bunching/Density Modulation on Plasma Acceleration Performance

- When using micro-bunches (or modulated driver), by controlling their position and charge the accelerator can be tuned to either maximize the wakefield, the transformer ratio, or the efficiency of the system.

Plasma-beam phase matching conditions for (a) max. wakefield (bunch separation ~ λ_p) (b) max. transformer ratio (bunch separation ~ 1.5 λ_p) - Kallos, E. et al., 12th AACW, 520 (2006).

• Slit-Mask Micro-buncher (Sub-mm $\lambda_{\tt p}$)

(L) The beam with a correlated energy spread enters the dog-leg on the left, is dispersed in space, goes through the mask, and then is brought back to energy-time correlation.

- D.C.Nguyen, B.E.Carlsten, NIM-A 375, 597-601 (1996)
- P. Muggli, et. al., PRL PRL 101, 054801 (2008)
- J.C.T.Thangaraj, et al. PRST 15, 110702 (2012)

•Laser-Induced Micro-Buncher (Sub- μ m λ_n)

The unmodulated electron beam is inserted co-propagating with a laser in the undulator. The output modulated beam is then fed into a crystal channel, and the energy change imparted onto the beam is imaged with a spectrometer on a phosphor screen.

- Kallos, E. et al., 12th AACW, 520 (2006).
- A.H. Lumpkin, J. Ruan, J.M. Byrd and R.B. Wilcox, FERMILAB-CONF-12-579-AD

Masked Chicane Technique for Density Modulation (Micro-Bunching)

D.C.Nguyen, B.E.Carlsten, NIM-A 375, pp. 587 – 601 (1996) J.C.T.Thangaraj, R,Thurman-Keup, et al., PRST-AB 15, 110702-1~10

$$R_{56} = \gamma \frac{dz}{d\gamma} = -4L \sec \theta + 4R\theta - 2D \sec \theta \tan^2 \theta$$
$$\eta_x = \gamma \frac{dx}{d\gamma} = -2L \tan \theta + 2R(1 - \cos \theta) - D \tan \theta (1 + \tan^2 \theta)$$
$$N_b = \frac{\sigma_{\eta,mask}}{W}$$
$$\sigma_{\eta,mask} = \sqrt{\epsilon_x \ \beta_{x,mask} + (\eta_{x,mask}\sigma_\delta)^2} \cong \eta_{x,mask}\sigma_\delta$$
$$\sigma_\delta^2 = \tau^2 \sigma_{\delta i}^2 + h_1^2 \cdot \sigma_{z,i}^2$$
$$N_b = \frac{\eta_{x,mask} h_1 \cdot \sigma_{z,i}}{W}$$
$$\Delta z = W \frac{\sqrt{(1 + h_1 R_{56})^2 \sigma_{z,i}^2 + \tau^2 R_{56}^2 \sigma_{\delta i}^2}}{\eta_{x,mask} h_1 \cdot \sigma_{z,i}}$$

Bunch-to-bunch spacing vs initial energy spread.

Simulation Analysis

Outlined Beamline Configuration for POC Experiment

(1) Mask Micro-Buncher

(3) Bunch Monitor

Martin-Puplett Interferometer (MPI)

Equipment for Beam Energy and Radiation Measurement

Photo images of instruments available for the project tasks at Fermilab (AO-HBESL and ASTA) (a) Faraday cup (b) beam profile monitors (c) c5680 streak camera (d) goniometers (L: AO-HBESL, R – ASTA), (e) beam spectrometer with the ASTA-goniometer, (f) MPI, and (g) THz Michelson interferometer with He-cooled bolometer.

Simulation Assessment of POC Experiment

What's Next?

- ASTA Schedule

			FY2014*				FY2015				FY2016				FY2017				FY2018				FY2019			
	Stage	Description - following Figures 2, 3, 4 and 5	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	0	as is: photoinjection to low-energy dump																								
	1.2	add CM #1 (~ 300 MeV), experimental area, and diagnostics area							1				9	Μ	on	th	s ()ps	s./3	8 n	nor	hth	s			
	I.3 add IOTA Storage Ring (50-150 MeV)									7			S	าน	tdo	w	n þ	per	ye	ear						$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$
	III add HINS 2.5 MeV H-/proton injector													_												
fabrication & construction (not interfering with beam operations)																										
experimental operations (9 months per year Planned maintenance/Installation (3 months per year		ar) ar)	• Start commissioning 50 MeV injector into beam dump in this												is Fa											

- Possible Accelerations beyond the Feasibility Test

Collaboration on Channeling Acceleration Research

THEXAC

Transformative High Energy X-ray Acceleration in Crystals

"Extreme Light Roadmap", Courtesy of T. Tajima

Activities :

X-ray Acceleration in Crystal (THEXAC) (integrated overall team)

← (1) Conceptual development, theoretical support, and overall direction (UCI) subteam)*

(2) Proof-of-Principle demonstration of single-oscillation X-ray laser pulse in extreme power (EW) (ELI-NP/Romania - Ecole Polytechnique subteam)*

(3) Wakefield Generation with a short charged electron and proton bunches in structured crystals carbon nanotubes (Fermilab - NIU subteam)*

(4) Positron channeling in crystals and wakefield generation in crystals with short, intense bunches at GeV energy; Linear X-ray Optics in crystal (SLAC/FACET/LCLS subteam)

T. Tajima, D. Farinella*, Y. Hwang*; U. Wienands, A. Chao, M. Hogan; U.Uggerhøj, R. Mikkelsen*, T. Poulsen*, T. Wistisen*; Y.M. Shin, A. Green*, R. Kreml*; V. Shiltsev; G. Mourou; N. Zamfir: UCI, SLAC, Aarhus U., Northern Illinois U., Fermilab, Ecole Polytechnique, ELI-NP

Thank You!