Channeling 2014 Oct. 5-10, Capri, Italy

QED aspects in Radiation by Relativistic Electrons in Matter or in External Fields

X. Artru IPN-Lyon, France

Dedicated to V.N. Baier, V.M. Strakhovenko and M. Kumakhov

Main topics

* I - Soft photon emission ($\omega \leq E$) : coherence lenght, equivalent photons, crystal-assisted radiation

• II - QED in strong field : hard photon emission, Baier-Katkov formula, pair creation

• III - Particular aspects of radiation : tunnelling, impact parameter, electron side-slipping

Natural units systems $\hbar = c = 1$; $\alpha = 1/137$

m = 511 KeV
$$E/m \equiv \gamma = (1-v^2)^{-1/2}$$
 $(v \equiv \beta)$

Radiation regimes

I - Soft photon emission $(\omega \leq E)$

- Classical radiation formula
- Coherence length
- Infrared contributions
- Equivalent photons ; applications
- Semi-bare electron
- Shadowing

Classical radiation formula in vacuum (1/3)

applies to :

- Synchrotron radiation in **weak** uniform or *non-uniform* field, e.g. undulator radiation
- Soft Compton effect (Thompson regime)
- **Soft** coherent Bremsstrahlung ($\omega \leq E$)
- Channeling Radiation (classical regime)
- Spin-blind and without recoil effect

Classical radiation formula (2/3) : covariant form

$$dN_{phot} = (\alpha/4\pi^2) d^3 \mathbf{k}/\omega |\mathbf{A} \cdot \mathbf{\epsilon}^*|^2$$

A = $\int dX \exp(i\phi)$; $\phi = -k \cdot X = \text{emission phase}$

4-vectors : $X = (t, \mathbf{r}), k = (\omega, \mathbf{k}), A = (A^0, \mathbf{A}), \epsilon = (\epsilon^0, \epsilon)$

interfere, with the phase dφ = – k·dX = – k·p dt/E Metric : –+++

Classical radiation formula (3/3) : non-covariant form

dN = (
$$\alpha\omega/4\pi^2$$
) d ω dΩ |**A**·ε^{*}|² gauge ε⁰=0

A =
$$\int \exp(i\phi) d\mathbf{r}_{\perp}$$
; φ = ωτ

 \mathbf{r}_{\perp} ($\neq \mathbf{r}_{\top}$): perp. to \mathbf{k} ; $\tau = t - \mathbf{n} \cdot \mathbf{r} = detector time$; $\mathbf{n} = \mathbf{k}/\omega$

Ultrarelativistic approximation $d\tau = (\gamma^{-2} + \mathbf{v}_{\perp}^2) dt/2$

A = ∫dτ exp(iωτ) d**r**_⊥/dτ apparent perpendicular velocity

= (i/
$$\omega$$
) $\int d\tau \exp(i\omega\tau) d^2\mathbf{r}_{\perp}/d\tau^2$

apparent perp. acceleration

Coherence lengths

 L_{coh} = distance over which ϕ changes by 1 radian

Infrared-divergent contributions

Recall : $\mathbf{A} = (i/\omega) \int d\tau \exp(i\omega\tau) d^2 \mathbf{r}_{\perp}/d\tau^2$, $d\tau = (\gamma^{-2} + \mathbf{v}_{\perp}^2) dt/2$

For very small $\omega \rightarrow \mathbf{A} = (2i/\omega)$ (initial $d\mathbf{r}_{\perp}/d\tau$ – final $d\mathbf{r}_{\perp}/d\tau$)

$$dN/d\omega d\Omega = (\alpha/\pi^2) \omega^{-1} | \mathbf{v'}_{\perp}/(\gamma^{-2} + \mathbf{v'}_{\perp}^2) - \mathbf{v}_{\perp}/(\gamma^{-2} + \mathbf{v}_{\perp}^2) |^2$$

$$\rightarrow N_{\text{photons}} = \infty$$

Moving Coulomb field ≈ cloud of **quasi-real** photons (Fermi, Weiszäker, Williams)

Momentum space: $dN/d\omega d\Omega = (\alpha \omega/\pi^2) |\mathbf{k}_T/(\omega^2 \gamma^{-2} + \mathbf{k}_T^2)|^2$

Impact param. space : $dN/d\omega d^2 \mathbf{b} \approx (\alpha/\omega\pi^2) |\omega/\gamma K_1(b\omega/\gamma) - b^{-1} J_0(b\omega)|^2$

$$\approx (\alpha/\omega\pi^2) b^{-2}$$
 between $b_{min} = 1/\omega$ and $b_{max} = \gamma/\omega$

Screening in medium : replace \mathbf{k}_T^2 by $\mathbf{k}_T^2 + \omega_P^2$ photon mass $b_{max} = lnf\{\gamma/\omega, 1/\omega_P\}$

Application of Equivalent Photons

(see analysis by Nikola Shul'ga)

Semi-bare electron

The electron is fully dressed by the equivalent photon cloud only after a **uniform** motion in **homogenous** medium of length > L_{coh} .

Final State Bremsstrahlung and Forward TR

Manifestations of semi-bare electrons

• reduced ionization loss (works by Shul'ga)

Shadowing

Shadowing effect is crucial in Smith-Purcell radiation

Shadowing suggests an upper bound for the Smith-Purcell radiation :

 $dW/dL < \alpha / (2\pi b^2)$ (b = impact parameter)

Crystal-assisted radiation

(Coherent Bremsstrahlung, Channeling Radiation)

Why electrons radiate more energy in aligned crystal than in amorphous matter ?

a simplified answer : super-atoms

Ignoring channeling effects:

$\theta^{2}_{m.s.}$ (aligned) ~ N × $\theta^{2}_{m.s.}$ (random) W_{Brems} (aligned) ~ N × W_{Brems} (random)

 $\label{eq:Limitation to N: N d ~ Inf \{a_{T-F} / \Psi \ , \ L_{coh} \}$

Contradiction with the Larmor formula

Recall :

 $I(\omega, \mathbf{n}) = (\alpha/4\pi^2) | \int d\tau \exp(i\omega\tau) d^2 \mathbf{r}_{\perp}/d\tau^2 |^2$ $\tau = t - \mathbf{n} \cdot \mathbf{r}; \mathbf{n} = \mathbf{k}/\omega; d^2 \mathbf{r}_{\perp}/d\tau^2 = \text{apparent perp. acceleration}$

Parseval-Plancherel identity : $\int d\omega \ \mathbf{I}(\omega, \mathbf{n}) = (\alpha/4\pi) \int d\tau \ (d^2 \mathbf{r}_{\perp}/d\tau^2)^2$ Integrating over **n** gives $W = (2/3) \alpha \int dt \ [(\gamma \mathbf{F}_{\top}/m)^2 + (\mathbf{F}_{\perp}/m)^2] \qquad [Larmor]$

For a straight trajectory : $dW/dL = (16\pi\alpha^2/9m^2) \gamma^2 \langle E^2 \rangle_{microscopic}$ It should not depend on the crystal orientation... = contrary to observation !

Failure of the Larmor formula

 $F(t) = F_{slow}(t) + F_{fast}(t)$ $\downarrow \qquad \qquad \downarrow$ soft photons $\omega << E$ hard photons $\omega \sim E$ (suppressed) or > E (forbidden)

 $\langle F_{slow}^2 \rangle + \langle F_{fast}^2 \rangle \sim$ independent of the crystal orientation,

but $\langle F_{slow}^2 \rangle$ (aligned) > $\langle F_{slow}^2 \rangle$ (random)

• F_{slow} (aligned)= F_{Lindhard}

... but Larmor formula works in CB

CB is due to $F_{Lindhard}$ only $\Rightarrow W_{CB}$ is independent on Ψ (checked by Gouanère et al),

- except for $\gamma \Psi$ > m a_{T-F} : F_{Lindhard} becomes "fast"

II - QED in Strong Field

Critical QED field : $E_{crit} = m^2/e = 1,32 \ 10^{18} \ volt/m$ e $E_{crit} \lambda_C = m$

with $\lambda_{\rm C}$ = *Compton wavelength* = 1/m = 386 fermi

Schwinger process in QED critical field

In an electric field $\mathbf{E} \sim \mathbf{E}_{crit}$, the vacuum is unstable against spontaneous pair creation

• Needs critical field **and enough volume**. It does not take place in the Coulomb field of a nucleus.

Schwinger process is a tunnelling effect

Tunnelling probability ~ $exp(-\pi E_{crit}/E)$

At high γ , E* can be over-critical. Critical parameter : $\chi = E^*/E_{crit}$

For $\chi > 1$: - "photon decay" $\gamma \rightarrow e^+ e^-$ - photon splitting $\gamma \rightarrow \gamma \gamma$ - hard channeling radiation : $\omega_{max} \sim E_{electron}$

A magnetic field $B^* = v E^*$ prevents spontaneous vacuum decay

In Germanium, $\mathbf{E} \sim 1 \text{ kV}$ / angstrom $\rightarrow \chi = 1$ for 50 GeV electrons ($\gamma = 10^5$).

- A strong enhancement of pair creation is observed.
- Hard CR leads to rapid **transverse energy cooling** → Belkacem peak

(recall) Channeling regimes in (γ, ψ) plane

The "magic" Baier-Katkov formula (1/5)

Cures the defects of the classical radiation formula and takes **recoil** and **spin** effects into account. Applies to :

- Synchrotron radiation in strong field
- Hard Compton effect (Klein-Nishina regime)
- Non-linear Compton effect
- Hard Coherent Bremsstrahlung
- Hard Channeling Radiation
- Incoherent Bremsstrahlung

Using crossing symmetry: pair creation in strong field (?)

The "magic" Baier-Katkov formula (2/5)

1) Recoil effect : replace
$$\phi = -k \cdot X$$

by $\phi' = -(E/E') k \cdot X$

2) Helicity-dependent amplitude :
$$\mathbf{A} \cdot \mathbf{\epsilon}^* \rightarrow \langle \lambda' | A_\Lambda | \lambda \rangle$$

 $\lambda, \lambda' = \pm 1/2$
 Λ : photon helicity. "R" : $\Lambda = +1$, "L" : $\Lambda = -1$

Summing over spins :

$$d\mathbf{N} = (\alpha\omega/8\pi^2) d\omega d\Omega \quad \{ (1+\gamma^2/\gamma'^2) \mid \int \exp(i\phi') d\mathbf{r}_{\perp} \mid^2 + (1/\gamma'-1/\gamma)^2 \mid \int \exp(i\phi') dt \mid^2 \}$$

The "magic" Baier-Katkov formula (3/5)

Helicity non-flip amplitudes

$$\langle +|A_{L}|+\rangle = \int \exp(i\phi') (dx+idy) /\sqrt{2}$$

 $\langle -|A_{R}|-\rangle = \int \exp(i\phi') (dx-idy) /\sqrt{2}$ = as classical, but with ϕ'

Helicity-flip amplitudes

$$\langle -|A_{R}|+\rangle = -\langle +|A_{L}|-\rangle = 2^{-1/2} (1/\gamma'-1/\gamma) \int \exp(i\phi') dt$$

 $\langle -|A_{L}|+\rangle = -\langle +|A_{R}|-\rangle = 0$

The "magic" B-K formula (4/5)

Why "magic" ?

- it does not depend on the final electron trajectory !

The field must not vary too fast in the transverse directions.

The "magic" B-K formula (5/5)

Explanation of the recoil correction $\phi' = (E/E') \phi$

(using local conservation of energy and transverse momentum)

Fine test of the B-K formula in channeling radiation

- Assume periodic trajectories and compare the spectral lines predicted by B-K with "exact" spectral lines.

Conserv. of energy and P_1 :

$$(\omega/\gamma\gamma' + \omega\theta^2)/2 = E_T - E'_T$$
(1)

B-K formula for the ν^{th} harmonic

$$(\omega/\gamma\gamma' + \omega'\theta^2)/2 = 2\nu\pi/L - \omega'\langle \mathbf{v}_T^2 \rangle /2$$
 (2)

v = n - n' = decrease of transverse quantum number n is given by the Bohr quantization rule $L \cdot E \cdot \langle \mathbf{v}_T^2 \rangle = 2n\pi$ \Rightarrow The R-H-S of (1) and (2) are equal for $\omega << E$.

 \Rightarrow B-K formula does not give the exact detailed spectrum in the hard region of CR.

III - Particular aspects of radiation

- Radiation as a tunneling effect
- Impact parameter of synchrotron radiation
- Side-slipping of the electron

Tunneling as a remedy to classical forbidness

is kinematically forbidden *as a local* process between *classical particles*. One cannot satisfy both p = p'+k and the mass-shell conditions.

It can occur via a quantum tunnelling effect.

Impact parameter of Synchrotron radiation

Synchrotron radiation ~ **slow leakage** of the Coulomb field

Tunnelling factor in Synchrotron Radiation

The tunnelling effect is more dramatic when the photon energy is above the cutoff $\omega_c = \gamma^3/R$.

It leads to the exponential decrease in

$$\exp\{-(\omega/\omega_{c})(1+\gamma^{2}\theta^{2}_{out})^{3/2}/3\}$$

of Synchrotron radiation.

Side slipping of the electron

- $b_e \sim Compton wavelength = 400 \text{ fm}$
- Side-slipping is responsible for the d³X/dt³ term of the Abraham-Lorentz equation

Crossed process : pair creation in strong field

Summary

We have looked at some of the QED phenomena involved in radiation by relativistic electrons, in matter or in external fields :

- Infrared divergence
- escape of the equivalent photons
- semi-bare electrons, LPM effect, shadowing
- quantum recoil
- radiation in critical field
- impact parameter of the photon, tunnelling, side-slipping.

Our considerations were very qualitative, phenomenological, a little bit superficial, and covered a very small part of the subject. We hope they have some universal character.

Thank you for your patient attention !